Atkinson, A. C., A. N. Donev, and R. D. Tobias. 2007. Optimum Experimental Design, with SAS. 2nd ed. Oxford: Oxford University Press.
Basu, D. 1980.
“Randomization Analysis of Experimental Data: The
Fisher Randomization Test.” Journal of the American Statistical Association 75: 575–82.
Beck, L., B. Mansour Dia, L. F. R. Espath, Q. Long, and R. Tempone. 2018.
“Fast
Bayesian Experimental Design:
Laplace-Based Importance Sampling for the Expected Information Gain.” Computer Methods in Applied Mechanics and Engineering 334: 523–53.
Box, G. E. P., and R. D. Meyer. 1986.
“An Analysis of Unreplicated Fractional Factorials.” Technometrics 28: 11–18.
Chaloner, K., and I. Verdinelli. 1995.
“Bayesian Experimental Design: A Review.” Statistical Science 10: 273–304.
Cox, D. R., and N. Reid. 2000. The Theory of the Design of Experiments. Boca Raton: Chapman; Hall/CRC Press.
Cuthbert, D. 1959.
“Use of Half-Normal Plots in Interpreting Factorial Two-Level Experiments.” Technometrics 1: 311–41.
Dasgupta, T., N. S. Pillai, and D. B. Rubin. 2015.
“Causal Inference from \(2^k\) Factorial Designs by Using Potential Outcomes.” Journal of the Royal Statistical Society B 77: 727–53.
Fang, K.-T., R. Li, and A. Sudjianto. 2006. Design and Modelling for Computer Experiments. Boca Raton: Chapman; Hall/CRC Press.
Firth, D. 1993.
“Bias Reduction of Maximum Likelihood Estimates.” Biometrika 80: 27–38.
Gilmour, S. G., and L. A. Trinca. 2012.
“Optimum Design of Experiments for Statistical Inference (with Discussion).” Journal of the Royal Statistical Society C 61: 345–401.
Gotwalt, C. M., B. A. Jones, and D. M. Steinberg. 2009.
“Fast Computation of Designs Robust to Parameter Uncertainty for Nonlinear Settings.” Technometrics 51: 88–95.
Hamada, M., H. F. Martz, C. S. Reese, and A. G. Wilson. 2001.
“Finding Near-Optimal
Bayesian Experimental Designs via Genetic Algorithms.” The American Statistician 55: 175–81.
Johnson, M. E., L. M. Moore, and D. Ylvisaker. 1990.
“Minimax and Maximin Distance Designs.” Journal of Statistical Planning and Inference 26: 131–48.
Jones, M. Schonlau, and W. J. Welch. 1998.
“Efficient Global Optimization of Expensive Black-Box Functions.” Journal of Global Optimization 13: 455–92.
Kennedy, M. C., and A. O’Hagan. 2001.
“Bayesian Calibration of Computer Models (with Discussion).” Journal of the Royal Statistical Society B 63: 425–64.
Luca, M., and M. H. Bazerman. 2020. The Power of Experiments: Decision Making in a Data-Driven World. Cambridge, MA.: MIT Press.
McKay, M. D., R. J. Beckman, and W. J. Conover. 1979.
“A Comparison of Three Methods for Selecting Values of Input Variables in the Analysis of Output from a Computer Code.” Technometrics 21: 239–45.
Meyer, and C. J. Nachtsheim. 1995.
“The Coordinate-Exchange Algorithm for Constructing Exact Optimal Experimental Designs.” Technometrics 37: 60–69.
Morris, M. D. 2011. Design of Experiments: An Introduction Based on Linear Models. Boca Raton: Chapman; Hall/CRC Press.
Müller, P. 1999.
“Simulation-Based Optimal Design.” In Bayesian Statistics 6, edited by J. M. Bernardo, M. J. Bayarri, J. O. Berger, A. P. Dawid, D. Heckerman, and A. F. M. Smith. Oxford.
Müller, P., and G. Parmigiani. 1996.
“Optimal Design via Curve Fitting of
Monte Carlo Experiments.” Journal of the American Statistical Association 90: 1322–30.
Müller, P., B. Sansó, and M. De Iorio. 2004.
“Optimal Bayesian Design by Inhomogeneous Markov Chain Simulation.” Journal of the American Statistical Association 99: 788–98.
Overstall, A. M., J. M. McGree, and C. C. Drovandi. 2018.
“An Approach for Finding Fully
Bayesian Optimal Designs Using Normal-Based Approximations to Loss Functions.” Statistics and Computing 28: 343–58.
Overstall, A. M., and D. C. Woods. 2017.
“Bayesian Design of Experiments Using Approximate Coordinate Exchange.” Technometrics 59: 458–70.
Overstall, A. M., D. C. Woods, and B. M. Parker. 2019.
“Bayesian Optimal Design for Ordinary Differential Equation Models with Application in Biological Science.” Journal of the American Statistical Association in press.
Plackett, R. L., and J. P. Burman. 1946.
“The Design of Optimum Multifactorial Experiments.” Biometrika 33: 305–25.
Rasmussen, C. E., and C. K. I. Williams. 2006. Gaussian Processes for Machine Learning. Cambridge, MA.: MIT Press.
Ryan, E. G., C. C. Drovandi, J. M. McGree, and A. N. Pettitt. 2016.
“A Review of Modern Computational Algorithms for
Bayesian Optimal Design.” International Statistical Review 84: 128–54.
Ryan, E. G., C. C. Drovandi, M. H. Thompson, and A. N. Pettitt. 2014.
“Towards
Bayesian Experimental Design for Nonlinear Models That Require a Large Number of Sampling Times.” Computational Statistics and Data Analysis 70: 45–60.
Santner, T. J., B. J. Williams, and W. I. Notz. 2019. The Design and Analysis of Computer Experiments. 2nd ed. New York: Springer.
Woods, D. C., and S. M. Lewis. 2017.
“Design of Experiments for Screening.” In Handbook of Uncertainty Quantification, edited by R. Ghanem, D. Higdon, and H. Owhadi, 1134–85. New York: Springer.
Wu, C. F. J., and M. Hamada. 2009. Experiments: Planning, Analysis, and Parameter Design Optimization. 2nd ed. New York: Wiley.