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1. Geometry

Approximate sets of points with simple geometric bodies, such as

balls, ellipsoids, boxes, or cylinders.

Ellipsoids are prefered to balls (similarly cylinders to boxes) because

they are �exible and smooth. We can easily �nd the optimizer of a

linear function over an ellipsoid.

Selin Damla Ahipasaoglu The Dk-optimal Design Problem and Its Dual



1. Geometry

Approximate sets of points with simple geometric bodies, such as

balls, ellipsoids, boxes, or cylinders.

Ellipsoids are prefered to balls (similarly cylinders to boxes) because

they are �exible and smooth. We can easily �nd the optimizer of a

linear function over an ellipsoid.

Selin Damla Ahipasaoglu The Dk-optimal Design Problem and Its Dual



1. Geometry

The set

E(x̄, H) := {x ∈ IRn : (x− x̄)TH(x− x̄) ≤ n}

for x̄ ∈ IRn and H ≻ 0 is an ellipsoid in IRn with center x̄ and

shape de�ned by H.

We have

vol(E(x̄, H)) = const(n)/
√
detH,

and minimizing the volume of E(x̄, H) is equivalent to minimizing

− ln detH.
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1. Geometry: The Fritz John Theorem

Theorem (John, 1948)

For any point set X = {x1, . . . , xm} ⊂ IRn, there is an ellipsoid E ,
which satis�es

x̄+
1

n
E ⊆ conv(X ) ⊆ x̄+ E ,

furthermore if X = −X ,

1√
n
E ⊆ conv(X ) ⊆ E .
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2. Minimum Volume Enclosing Ellipsoids

Given m points X := {x1, x2, . . . , xm} ∈ IRn which span IRn, the

Minimum Volume Enclosing Ellipsoid (MVEE) problem �nds an

ellipsoid which is centered at the origin (wlog), covers all points,

and has minimum volume.
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2. MVEE Formulation

The MVEE problem can be formulated as follows:

min f(H) := − ln detH
(P ) xTi Hxi ≤ n, i = 1, . . . ,m,

H ≻ 0.

Problem (P ) is convex, with linear inequality constraints.

This is also an SDP problem. Interior-point methods can be applied

to the problem with barrier function − ln det on Sn
++.

Selin Damla Ahipasaoglu The Dk-optimal Design Problem and Its Dual



3. The Approximate D-optimal Design Problem

Let X := [x1, . . . , xm] ∈ IRn×m and U := Diag (u), the dual
problem to the MVEE can be written as

max g(u) := ln detXUXT

(D) eTu = 1,
u ≥ 0.

(D) is the statistical problem of �nding a D-optimal design

measure on the columns of X, that maximizes the determinant of

the Fisher information matrix when estimating all parameters

θ1, . . . , θn in the linear model

ỹ ≈ XT θ.
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4. Duality / Optimality conditions / Equivalence theorem
For any H feasible for (P ) and u feasible for (D), we have

g(u) ≥ f(H).

Furthermore, optimal solutions Ĥ and û exist and satisfy the

following necessary and su�cient conditions:

(a) ûi > 0 only if xTi Ĥxi = n
(b) Ĥ = (XÛXT )−1.
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5. Minimum Area Enclosing Ellipsoidal Cylinders
Given m points {x1, x2, ..xm} ∈ IRn which span IRn and k≤n, the
Minimum Area Enclosing Ellipsoidal Cylinder (MAEC) problem

�nds an ellipsoidal cylinder which is centered at the origin, covers

all points and has minimum area intersection with

Π :=

{[
y
z

]
∈
[

IRk

IRn−k

]
: z = 0

}
.
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6. Geometry

The set

C(E,H) := {[y; z] ∈ IRn : (y + Ez)TH(y + Ez) ≤ k}

for E ∈ IRk×(n−k) and H ≻ 0 is a cylinder in IRn de�ned by shape

matrix H and axis direction matrix E.

Note that C(E,H) ∩Π is an ellipsoid in IRk with

vol(C(E,H) ∩Π) = const(k)/
√
detH,

and minimizing the volume of C(E,H) ∩Π is equivalent to

minimizing

− ln detH.
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7. MAEC Formulation

The MAEC problem can be formulated as follows:

min f(HY Y ) := − ln detHY Y

(yi + Ezi)
THY Y (yi + Ezi) ≤ k, i = 1, . . . ,m,

or equivalently

min f(H) := − ln detHY Y

(P ) xTi Hxi ≤ k, i = 1, . . . ,m,
H ⪰ 0,

where H =

(
HY Y HY Z

HT
Y Z HZZ

)
.
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8. The Dk-optimal Design Problem

The dual problem can be stated as

maxu,K g(u) := ln detK

XUXT −K := XUXT −
(

K 0
0 0

)
⪰ 0

(D) eTu = 1,
u ≥ 0.

(D) is the statistical problem of �nding a Dk-optimal design

measure on the columns of X, that maximizes the determinant of a

Schur Complement in the Fisher information matrix which is related

to estimating the �rst k parameters θ1, . . . , θk in the linear model

ỹ ≈ XT θ.
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9. Weak Duality

Suppose H, u and K are feasible in (P ) and (D) respectively. Then

0 ≤H •
(
XUXT −K

)
=

∑
i

uix
T
i Hxi −H •K ≤ keTu−HY Y •K.

Hence we have

− ln detHY Y − ln detK = − ln detHY Y K

= −k ln(Πk
i=1λi(HY Y K))1/k ≥ −k ln

(∑n
i=1 λi(HY Y K)

k

)
≥ −k ln

(
k

k

)
≥ 0.
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10. Optimality Conditions / Equivalence Theorem

We have strong duality if

(a) H • (XUXT −K) = 0

(b) ui > 0 only if xTi Hxi = (yi + Ezi)
TK−1(yi + Ezi) = k

(c) HY Y = K−1.

For optimal u, condition (a) implies E(ZUZT ) = −(Y UZT ) and
K = Y UY T − E(ZUZT )ET .

We say u is an ϵ-approximate optimal solution if

(a) (yi + Ezi)
TK−1(yi + Ezi) ≤ (1 + ϵ)k, i = 1, . . . ,m

(b) ui > 0 implies (yi + Ezi)
TK−1(yi + Ezi) ≥ (1− ϵ)k.
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11. A Frank-Wolfe Type Algorithm

Using u+ := (1− τ)u+ τei and rank-one update formulas lead to

an algorithm:

1. Find a feasible u, E and K and calculate wk(u) where
∂g(u)
∂ui

= wk
i (u) := (yi + Ezi)

TK−1(yi + Ezi).

2. Check for ϵ-approximate optimality.

3. i is chosen to maximize the improvement in the objective

function or optimality conditions.

4. Update u to u+, where step size τ is a solution of a quadratic

equation.

5. Update E, K and wk and go to step 2.
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12. Why is Dk criterion harder than D?

Example: Let X =

[
Y
Z

]
=

[
0 0 1
0 1 0

]
, k = 1, and

u = [0, 0, 1]. We have XUXT =

[
1 0
0 0

]
and

E(ZUZT ) = −(Y UZT ) becomes E0 = 0. For |E| ≤ 1, this
cylinder contains X

|E| = 1 0 < |E| < 1
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12. Why is Dk criterion harder than D?

• For a given iterate u, when ZUZT is not pd, it is hard to

choose a matrix E which satis�es E(ZUZT ) = −(Y UZT ).

• Computational and theoretical complications.

• Modify the algorithm so that ZUZT never becomes singular

until the last iteration.

• Unlike MVEE, choosing the right pivot is not trivial.

• Choosing a warm-start is hard because of the unknown

direction of the axis.
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13. Complexity Analysis
Assuming ZUZT ≻ 0, w(u) < C1, w

k(u) < C2, we have:

• O(k(m+ ln k + k ln lnm+ ϵ−1)) iterations.

• Each iteration takes O(nm) operations.

• Local linear convergence similar to D-optimal design:

O(Q̃+ M̃ log(ϵ−1)) iterations under technical assumptions.

• Away steps are necessary for rapid convergence.
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14. Computational Study

Table: Geometric Mean of Running Time and Average Number of

Iterations Required by the Algorithm to Obtain an ϵ-Approximate

Solution

Dimensions With Away Steps

k n m -log10 ϵ iter time (sec.)

5 20 20000 6 227 1.125

10 20 20000 6 162 0.7344

15 20 20000 6 136 0.6562

10 50 50000 6 1358 23.375

25 50 50000 6 2132 34.3438

40 50 50000 6 651 9.6719

20 100 100000 6 773 55.7812

50 100 100000 6 997 62.2188

80 100 100000 6 677 37.4219
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Conclusions

• First-order methods are very e�ective and actually necessary to

handle very large instances.

• Modi�cation is necessary and very practical for ZUZT ⊁ 0.

• A good warm-start strategy can be helpful.

• Can we prove any non-trivial core-set results?

• Identify and eliminate non-support points?

THANK YOU :)
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