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CI AND NONLINEAR LEAST SQUARES

Figure: Continuous line - SS contour, dashed line linearized model.
Two different designs for MM model from Seber and Wild (2003,
p.114)

P. 113 has more curved SS contours from worse designs, but omits
the dashed lines promised in the figure caption.



PROBLEMS WITH NONLINEAR LEAST SQUARES

1. Some NLLS problems give SS contours which are twisting
narrow valleys in parameter space.

2. Numerical problems - convergence of algorithms
3. Inferential problems: calculation of SS contours and

content of such regions.
4. Reparameterize to obtain approximately elliptical contours,

which will be close to those from linearized model



STABLE PARAMETERIZATION

1. Parametric transformation — maps the original vector of
parameters θθθ into ϑϑϑ ∈ Rnθ : T : θθθ 7→ ϑϑϑ.

2. T might include linear and nonlinear functions.
3. Stable parameter vector — a set of parameters that, after

transformation is, for a given design and response model,
less intercorrelated than the estimates of the original
model structure.

4. Measured by the conditioning of the dispersion matrices,
or graphically by the orientation and eccentricity of the
likelihood contours.



STABLE PARAMETERIZATION: MICHAELIS-MENTEN 1

1. How to find a stable parameterization? Ross uses responses at
equally spaced values in (one-dimensional) x.

2. Ross (1990, Cap.2) gives an example with the Michaelis-Menten
rate model

E(y) =
θ2 x
θ3 + x

. (1)

Using data at x = [1, . . . , 7], let ϑ1 = ŷ(x = 3) and ϑ2 = ŷ(x = 6).
Then

E(y) =
ϑ1ϑ2 x

(2ϑ1 − ϑ2)x + 6(ϑ2 − ϑ1)
. (2)

3. NOTE! This parametric transformation does not change the
relationship between y and x. (It may change the estimated
relationship)



STABLE PARAMETERIZATION: MICHAELIS-MENTEN 2

Figure: Left: original parameterization (1); right: stable
parameterization (2). 60% and 95% SS based CI. Ross, p.15



STABLE PARAMETERIZATION: LINEAR REGRESSION

E(y) = β0 + β1x,

Suppose x values in a small interval around 106; then β̂0 and β̂1
highly correlated. But T : (β0, β1) 7→ (α− β1x̄, β1) gives the

model

E(y) = α+ β1(x − x̄),

for which α̂ and β̂1 are uncorrelated.



K-OPTIMAL DESIGNS

1. Instead of means, for example, at 3 and 6, use optimal design to
find design points and weights for a given model (not data).

2. The K–optimality criterion minimizes the condition number of the
FIM, defined as the ratio

γ[M(ξ|x, θθθ)] = λmax[M(ξ|xθθθ)]/λmin[M(ξ|x, θθθ)],

of extreme eigenvalues of the FIM. The design problem is

ξK = argmin
ξ∈Ξ

λmax[M(ξ|x,p)]
λmin[M(ξ|x,p)]

. (3)

3. The formulation for K–optimal designs was first considered in Ye
and Zhou (2013)



PARAMETRIC TRANSFORMATIONS TO STABLE
PARAMETERS

1. Techniques to find parametric transformations to vectors of
stable parameters

2. Michaelis-Menten example deceptively simple since can solve
algebraic equations

3. Reparameterization uses a family of symbolic curves
constructed to pass through a set of previously chosen points in
the domain of the regressors.

4. To find the set of stable parameters use the support points of the
K–optimal design Two distinct approaches to the numerical
problem



PARAMETRIC TRANSFORMATIONS TO STABLE
PARAMETERS: APPROACH 1

1. Let xs, of size ns, be the support points of the K–optimal design.
Find T , from a set of algebraic (symbolic) equations where the
vector of stable parameters represent the response surface at
the support points, i.e.

ϑi = f (xi, θθθ), i ∈ [ns]. (4)

2. A rearrangement of (4) allows expressing θθθ as a function of ϑϑϑ

θθθ = g(xs,ϑϑϑ) (5)

where g(•) is a vector of functions forming the parametric
transformation T

3. In some cases, the analytic expression of (5) can be obtained
through symbolic computation tools, such as Mathematica®.

4. If the f (x, θθθ) do not involve trigonometric or transcendental terms
the solution can be exactly expressed in closed form (MM).
Otherwise, an implicit definition or the explicit form of some
approximation need to be considered.



PARAMETRIC TRANSFORMATIONS TO STABLE
PARAMETERS: APPROACH 2

1. An alternative approach approximates f (x, θθθ) by a first-order
Taylor expansion with respect to θθθ. Then (4) becomes

ϑϑϑ ≃ f0 + J(x,p0) (θθθ − p0) (6)

where the vector f0 = {f (xi,p0} contains the model predictions
using the original vector of parameters, p0. Let J(x, θθθ) be the
ns × nθ Jacobian matrix

J(x,p0) =

{(
∂f (xi, θθθ)

∂θj

)∣∣∣∣
θθθ=p0

, j ∈ [nθ]

}
i ∈ ns.

formed by 1 × nθ vectors containing the derivatives of the model
with respect to to the parameters at support point i:

2. The solution for θθθ is therefore

θθθ = p0 + [J(x,p0)]
−1 (ϑϑϑ− f0)

Consequently, g(xs,ϑϑϑ) = p0 + [J(x,p0)]
−1 (ϑϑϑ− f0).



PERFORMANCE INDICATORS 1

1. Purpose: to compare the effect of model reparameterization on
model fitting using various design criteria.

2. 1 The maximum of the absolute cross-correlation among the
parameter estimates (ϱ). We first construct an approximation to
the correlation matrix using the covariance matrix C(θ̂θθ), given by
the linearised model from the LS algorithm at convergence with
estimates θ̂θθ. Let B(θ̂θθ) be a diagonal (square) matrix of size nθ

containing the square roots of the diagonal elements of C(θ̂θθ), i.e.
Bi,i =

√
Ci,i, i ∈ [nθ] and Bi,j = 0, i, j ∈ [nθ], i ̸= j. The correlation

matrix of the parameter estimates is then given by

R(θ̂θθ) = B−1(θ̂θθ) C(θ̂θθ) B−1(θ̂θθ).

and
ϱ = max

i,j∈[nθ ]
j̸=i

|Ri,j|.

3. Both for θ and ϑ.



PERFORMANCE INDICATORS 2

1. 2 The condition number of the sensitivity matrix (represented by
κ).

2. κ = λmax[C(θ̂θθ)]/λmin[C(θ̂θθ)], the ratio of the maximum and
minimum eigenvalues of the covariance matrix. A lower
condition number is an indication of reduced parametric
collinearity. Belsley et al. (2005) suggest the arbitrary numbers
of 0.90 as the cut-off value for the maximum absolute parametric
correlation, and 20 as the threshold for the condition number.

3. In addition use the graphical representation of the 95%
confidence ellipsoids for pairs of parameters using elliptical CI.
More eccentric ellipsoids in general denote higher parameter
collinearity. When the eccentricity is 1.0 the confidence region is
circular and the parameters are uncorrelated. Contrarily, when
the axes of the ellipses are not the coordinate axes, as the
eccentricity tends to +∞ the confidence region tends to a line,
and the parameters are highly correlated.



EXAMPLE 1: EXPONENTIAL MODEL 1

E(y) = θ1 + θ2 exp(−θ3 x) (7)

with design region X = [0, 10], discretized with ∆x = 0.1 and
p0 ≡ (1.0, 1.0, 0.1)⊺.

Table: Exponential model (7): optimal designs, X = [0, 10], ∆x = 0.1,
and p0 = (1.0, 1.0, 0.1)⊺.

Optimality
Criterion Design Optimum ϱ† κ† ϱ‡ κ‡

D–
(

0.0000 4.1999 10.0000
0.3334 0.3333 0.3333

)
0.2051 0.9952 4.4778E+3 0.6192 9.9220

A–
(

0.0000 4.200 10.0000
0.1567 0.4826 0.3608

)
506.064 0.9896 4.8957E+3 0.7835 20.4597

E–
(

0.0000 4.2000 10.0000
0.1042 0.6520 0.2438

)
0.0019 0.9896 5.0800E+3 0.8065 20.7862

K–
(

0.0000 2.5000 10.0000
0.5458 0.3399 0.1143

)
3408.26 0.9996 2.8100E+3 0.4071 3.3525

† — based on original model; ‡ — based on parameterized model.



EXAMPLE 1: EXPONENTIAL MODEL 2

1. ρ: maximum correlation ≤ 0.9

2. κ: condition number < 20.

Optimality
Criterion Design Optimum ϱ† κ† ϱ‡ κ‡

D–
(

0.0000 4.1999 10.0000
0.3334 0.3333 0.3333

)
0.2051 0.9952 4.4778E+3 0.6192 9.9220

A–
(

0.0000 4.200 10.0000
0.1567 0.4826 0.3608

)
506.064 0.9896 4.8957E+3 0.7835 20.4597

E–
(

0.0000 4.2000 10.0000
0.1042 0.6520 0.2438

)
0.0019 0.9896 5.0800E+3 0.8065 20.7862

K–
(

0.0000 2.5000 10.0000
0.5458 0.3399 0.1143

)
3408.26 0.9996 2.8100E+3 0.4071 3.3525

† — based on original model; ‡ — based on reparameterized model.



EXAMPLE 1: EXPONENTIAL MODEL 3
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Figure: Exponential model (7): 95% confidence ellipses for
parameters obtained with the optimal designs in Table 1 for θ̂3 vs. θ̂1:
(a) considering the original parameters; (b) after reparameterization.



EXAMPLE 1: EXPONENTIAL MODEL 4
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The ellipses in (b) are calculated by simulation from the optimum
designs for the various criteria. Data from all simulations are then
fitted by the model with stable parameters. K-optimality here is not

fully orthogonal due to approximations in solving θθθ = g(xs,ϑϑϑ).



EXAMPLE 2: GENERALIZED MICHAELIS-MENTEN MODEL
1

E(y) = θ1 +
θ2 x
θ3 + x

, (8)

is a rational polynomial function and admits exact solutions by
applying purely algebraic manipulation techniques.
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Michaelis-Menten model (8): 95% confidence ellipses for parameters
obtained with optimal designs for θ̂3 vs. θ̂1: (a) considering the original
parameters; (b) after reparameterization.



EXAMPLE 2: GENERALIZED MICHAELIS-MENTEN MODEL
2

The stable transformation vector that gives exactly zero correlation in
the preceding figure is found from the support points of the
K-optimum design. Since the model is a rational polynomial function,
these can be found to be

θθθ =
(

ϑ1,
77.0 (ϑ1 ϑ2+ϑ1 ϑ3−ϑ2 ϑ3−ϑ1

2)
77.0 ϑ1−100.0 ϑ2+23.0 ϑ3

, 230.0 ϑ2−230.0 ϑ3
77.0 ϑ1−100.0 ϑ2+23.0 ϑ3

)⊺
. (9)



MORE POINTS

1. One purpose of near orthogonality is that nearly independent
inferences can be made about the parameters of the model. But
here the ϑ do not have any clear physical meaning

2. Point is to obtain good parameter estimates. Then models can
be compared in terms of Residual SS. Nested Models or BIC
and relatives for non-nested models. Ross’s book is called
‘Nonlinear Estimation’

3. Examples from the laboratory. Look at SS contours and
compare with first-order approximations.

4. Are compound designs important? Difference between D-and
K-optimum designs in exponential model example.

5. I am grateful to Dr B. Bogacka for her help in the preparation of
this talk.

6. Details, including computing, in Duarte et al. (2023).
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