Valid restricted randomization for small experiments

R. A. Bailey
University of St Andrews

University of London

mODa 13, Southampton, 11 July 2023
Joint work with Josh Paik (Penn State University)

Introductory example

Suppose that scientists at a horticultural research institute are planning an experiment to compare three varieties of tomato, labelled A, B and C, to see which gives the biggest yield (in weight of fruit per plant). They propose to use a greenhouse which has room for nine tomato plants in a single row. The initial, systematic layout is shown below.
position ("plot")

variety ("treatment") | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| A | A | A | B | B | B | C | C | C |

Introductory example

Suppose that scientists at a horticultural research institute are planning an experiment to compare three varieties of tomato, labelled A, B and C, to see which gives the biggest yield (in weight of fruit per plant). They propose to use a greenhouse which has room for nine tomato plants in a single row. The initial, systematic layout is shown below.
position ("plot")

variety ("treatment") | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | A | A | B | B | B | C | C | C |

The usual method of randomization is to take a random permutation from the symmetric group S_{9} of all possible permutations of nine objects, and apply it to that initial layout.

Introductory example

Suppose that scientists at a horticultural research institute are planning an experiment to compare three varieties of tomato, labelled A, B and C, to see which gives the biggest yield (in weight of fruit per plant). They propose to use a greenhouse which has room for nine tomato plants in a single row.
The initial, systematic layout is shown below.

position ("plot")									
variety ("treatment")	1	2	3	4	5	6	7	8	9
	A	A	A	B	B	B	C	C	C

The usual method of randomization is to take a random permutation from the symmetric group S_{9} of all possible permutations of nine objects, and apply it to that initial layout. What should we do if a random permutation from S_{9} gives a layout such as $A A A B B B C C C$ or $C C C A A A B B B$ or $B C A A A C C B B$?

The argument

What should we do if a random permutation from S_{9} gives us $A A A B B B C C C$ or $С С С A A A B B B$ or $B C A A A C C B B$?

The argument

What should we do if a random permutation from S_{9} gives us $A A A B B B C C C$ or $C C C A A A B B B$ or $B C A A A C C B B$?
Devil 1: I think that nearby plots are alike. If we use this layout and find differences between varieties, how can we know that it isn't just a difference between regions? Throw that layout away and re-randomize.

The argument

What should we do if a random permutation from S_{9} gives us $A A A B B B C C C$ or $C C C A A A B B B$ or $B C A A A C C B B$?
Devil 1: I think that nearby plots are alike. If we use this layout and find differences between varieties, how can we know that it isn't just a difference between regions? Throw that layout away and re-randomize.
Devil 2: If you keep doing that, differences between regions will contribute more to the estimate of experimental error than they will to the estimates of differences between varieties, so you may fail to detect genuine differences between varieties.

The argument

What should we do if a random permutation from S_{9} gives us $A A A B B B C C C$ or $C C C A A A B B B$ or $B C A A A C C B B$?
Devil 1: I think that nearby plots are alike. If we use this layout and find differences between varieties, how can we know that it isn't just a difference between regions? Throw that layout away and re-randomize.
Devil 2: If you keep doing that, differences between regions will contribute more to the estimate of experimental error than they will to the estimates of differences between varieties, so you may fail to detect genuine differences between varieties.
Angel: Can we use a smaller set of potential layouts with the properties that
(a) we never get a series of 3 adjacent plots with the same variety;
(b) we do not get the bias mentioned by Devil 2?

Some history

One common suggestion is simply to discard the undesirable layout and randomize again.

Some history

One common suggestion is simply to discard the undesirable layout and randomize again.
However, this introduces bias, as it makes comparisons between neighbouring plots more likely to contribute to the estimators of treatment differences.

Some history

One common suggestion is simply to discard the undesirable layout and randomize again.
However, this introduces bias, as it makes comparisons between neighbouring plots more likely to contribute to the estimators of treatment differences.
This bias was pointed out by Rothamsted statisticians
R. A. Fisher and F. Yates nearly a century ago.

Some history

One common suggestion is simply to discard the undesirable layout and randomize again.
However, this introduces bias, as it makes comparisons between neighbouring plots more likely to contribute to the estimators of treatment differences.
This bias was pointed out by Rothamsted statisticians R. A. Fisher and F. Yates nearly a century ago.
R. A. Fisher initially advocated randomizing by choosing at random from among all layouts with a given property.

Some history

One common suggestion is simply to discard the undesirable layout and randomize again.
However, this introduces bias, as it makes comparisons between neighbouring plots more likely to contribute to the estimators of treatment differences.
This bias was pointed out by Rothamsted statisticians
R. A. Fisher and F. Yates nearly a century ago.
R. A. Fisher initially advocated randomizing by choosing at random from among all layouts with a given property. He also corresponded with "Student", O. Tedin and H. Jeffreys in the 1920s and 1930s about the bad consequences of simply throwing away randomized layouts with undesirable patterns.

Some history

One common suggestion is simply to discard the undesirable layout and randomize again.
However, this introduces bias, as it makes comparisons between neighbouring plots more likely to contribute to the estimators of treatment differences.
This bias was pointed out by Rothamsted statisticians
R. A. Fisher and F. Yates nearly a century ago.
R. A. Fisher initially advocated randomizing by choosing at random from among all layouts with a given property. He also corresponded with "Student", O. Tedin and H. Jeffreys in the 1920s and 1930s about the bad consequences of simply throwing away randomized layouts with undesirable patterns. He explained this well in his 1935 book Design of Experiments.

Some history

One common suggestion is simply to discard the undesirable layout and randomize again.
However, this introduces bias, as it makes comparisons between neighbouring plots more likely to contribute to the estimators of treatment differences.
This bias was pointed out by Rothamsted statisticians
R. A. Fisher and F. Yates nearly a century ago.
R. A. Fisher initially advocated randomizing by choosing at random from among all layouts with a given property. He also corresponded with "Student", O. Tedin and H. Jeffreys in the 1920s and 1930s about the bad consequences of simply throwing away randomized layouts with undesirable patterns. He explained this well in his 1935 book Design of Experiments. In 1939, Yates proposed the term restricted randomization for any method of randomization that does not include all possible layouts (but preferably avoids both forms of bias).

Terminology: UK, Australia

[^0]
Treatment structure How many?

Are they factorial?
Is any factor quantitative?
Is there a control?

Terminology: UK, Australia

Terminology: UK, Australia

Terminology: UK, Australia

Randomization

Plot structure	
Inherent nuisance factors Maybe none Maybe blocks Maybe rows and columns Small units inside large units	Construct design Which treatment goes on which experimental unit?

Terminology: UK, Australia

Terminology: UK, Australia

Terminology: UK, Australia

Restricted randomization means using only a proper subset of the possible layouts.

Terminology: USA

There is less distinction between the plot structure and the treatment structure.

Terminology: USA

There is less distinction between the plot structure and the treatment structure.
Rather than thinking of randomization as a permutation of the plots,
they talk about "randomizing the treatments to the plots".

Terminology: USA

There is less distinction between the plot structure and the treatment structure.
Rather than thinking of randomization as a permutation of the plots,
they talk about "randomizing the treatments to the plots".
In a split-plot design,
they "randomize the levels of treatment factor F to whole plots, and randomize the levels of treatment factor G to subplots".

Terminology: USA

There is less distinction between the plot structure and the treatment structure.
Rather than thinking of randomization as a permutation of the plots,
they talk about "randomizing the treatments to the plots".
In a split-plot design,
they "randomize the levels of treatment factor F to whole plots, and randomize the levels of treatment factor G to subplots".
That is what they mean by "restricted randomization".

Terminology: USA

There is less distinction between the plot structure and the treatment structure.
Rather than thinking of randomization as a permutation of the plots,
they talk about "randomizing the treatments to the plots".
In a split-plot design,
they "randomize the levels of treatment factor F to whole plots, and randomize the levels of treatment factor G to subplots".
That is what they mean by "restricted randomization".
They use the term constrained randomization for what I call restricted randomization.

Terminology: USA

There is less distinction between the plot structure and the treatment structure.
Rather than thinking of randomization as a permutation of the plots,
they talk about "randomizing the treatments to the plots".
In a split-plot design,
they "randomize the levels of treatment factor F to whole plots, and randomize the levels of treatment factor G to subplots".
That is what they mean by "restricted randomization".
They use the term constrained randomization for what I call restricted randomization.

From now on, I will continue to use the term restricted randomization in the sense that Yates did.

Valid randomization

In the context of experiments with a single error term in the analysis of variance,
Fisher and Yates said that a method of randomization should have the property that, averaged over all possible outcomes of the randomization, the expectations of the mean square for treatments and the mean square for error should be equal if there are no differences between treatments.

Valid randomization

In the context of experiments with a single error term in the analysis of variance,
Fisher and Yates said that a method of randomization should have the property that, averaged over all possible outcomes of the randomization, the expectations of the mean square for treatments and the mean square for error should be equal if there are no differences between treatments.
A method of randomization satisfying this property is called weakly valid.

Valid randomization

In the context of experiments with a single error term in the analysis of variance,
Fisher and Yates said that a method of randomization should have the property that, averaged over all possible outcomes of the randomization, the expectations of the mean square for treatments and the mean square for error should be equal if there are no differences between treatments.
A method of randomization satisfying this property is called weakly valid.
This property was strengthened by Grundy and Healy in 1950 by requiring the expected mean square for any subset of treatment comparisons to be equal to the expected mean square for error.

Valid randomization

In the context of experiments with a single error term in the analysis of variance,
Fisher and Yates said that a method of randomization should have the property that, averaged over all possible outcomes of the randomization, the expectations of the mean square for treatments and the mean square for error should be equal if there are no differences between treatments.
A method of randomization satisfying this property is called weakly valid.
This property was strengthened by Grundy and Healy in 1950 by requiring the expected mean square for any subset of treatment comparisons to be equal to the expected mean square for error.
A method of randomization satisfying this property is called strongly valid.

Some notation and technical details

Denote by $T(\alpha)$ the treatment on plot α.

Some notation and technical details

Denote by $T(\alpha)$ the treatment on plot α.
The additive model assumes that the response Y_{α} on plot α is given by

$$
Y_{\alpha}=\tau_{T(\alpha)}+\varepsilon_{\alpha}
$$

Some notation and technical details

Denote by $T(\alpha)$ the treatment on plot α.
The additive model assumes that the response Y_{α} on plot α is given by

$$
Y_{\alpha}=\tau_{T(\alpha)}+\varepsilon_{\alpha}
$$

where $\tau_{T(\alpha)}$ is an unknown constant depending on treatment $T(\alpha)$

Some notation and technical details

Denote by $T(\alpha)$ the treatment on plot α.
The additive model assumes that the response Y_{α} on plot α is given by

$$
Y_{\alpha}=\tau_{T(\alpha)}+\varepsilon_{\alpha}
$$

where $\tau_{T(\alpha)}$ is an unknown constant depending on treatment $T(\alpha)$ and ε_{α} is an unknown quantity depending on plot α.

Some notation and technical details

Denote by $T(\alpha)$ the treatment on plot α.
The additive model assumes that the response Y_{α} on plot α is given by

$$
Y_{\alpha}=\tau_{T(\alpha)}+\varepsilon_{\alpha}
$$

where $\tau_{T(\alpha)}$ is an unknown constant depending on treatment $T(\alpha)$
and ε_{α} is an unknown quantity depending on plot α.
If $\alpha \neq \beta$ then we make no assumptions about the relationship between ε_{α} and ε_{β}.

Some notation and technical details

Denote by $T(\alpha)$ the treatment on plot α.
The additive model assumes that the response Y_{α} on plot α is given by

$$
Y_{\alpha}=\tau_{T(\alpha)}+\varepsilon_{\alpha}
$$

where $\tau_{T(\alpha)}$ is an unknown constant depending on treatment $T(\alpha)$
and ε_{α} is an unknown quantity depending on plot α.
If $\alpha \neq \beta$ then we make no assumptions about the relationship between ε_{α} and ε_{β}.
Random choice of layout for the experiment turns all our statistical notions (such as estimators and mean squares) into random variables.

More technical details

In an unblocked experiment with equal replication, a method of randomization is strongly valid if there are probabilities p_{1} and p_{2} such that, whenever α and β are distinct plots,

$$
\begin{equation*}
P(T(\alpha)=T(\beta)=i)=p_{1} \quad \text { for each treatment } i \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
P(T(\alpha)=i \text { and } T(\beta)=j)=p_{2} \quad \text { whenever } i \neq j \tag{2}
\end{equation*}
$$

More technical details

In an unblocked experiment with equal replication, a method of randomization is strongly valid if there are probabilities p_{1} and p_{2} such that, whenever α and β are distinct plots,

$$
\begin{equation*}
P(T(\alpha)=T(\beta)=i)=p_{1} \quad \text { for each treatment } i \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
P(T(\alpha)=i \text { and } T(\beta)=j)=p_{2} \quad \text { whenever } i \neq j \tag{2}
\end{equation*}
$$

If a strongly valid method of randomization is used, then all pairs of distinct plots have the same probability p_{2} of contributing to the estimator of the difference between any ordered pair of distinct treatments, and probability $v p_{1}$ of contributing to the mean square for error, where v is the number of treatments.

Even more technical details

Suppose that there are v treatments, each with replication r, so that the number N of plots is given by $N=v r$. If Equations (1) and (2) are satisfied, then

$$
\begin{equation*}
p_{1}=\frac{1}{v} \frac{r-1}{N-1} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{2}=\frac{1}{v} \frac{r}{N-1} . \tag{4}
\end{equation*}
$$

Even more technical details

Suppose that there are v treatments, each with replication r, so that the number N of plots is given by $N=v r$. If Equations (1) and (2) are satisfied, then

$$
\begin{equation*}
p_{1}=\frac{1}{v} \frac{r-1}{N-1} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{2}=\frac{1}{v} \frac{r}{N-1} . \tag{4}
\end{equation*}
$$

For an experiment in blocks, there is one such pair of probabilities for plots in the same block, and another such pair for plots in different blocks.

Even more technical details

Suppose that there are v treatments, each with replication r, so that the number N of plots is given by $N=v r$. If Equations (1) and (2) are satisfied, then

$$
\begin{equation*}
p_{1}=\frac{1}{v} \frac{r-1}{N-1} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{2}=\frac{1}{v} \frac{r}{N-1} . \tag{4}
\end{equation*}
$$

For an experiment in blocks, there is one such pair of probabilities for plots in the same block, and another such pair for plots in different blocks.
For a Latin square, there is one such pair for plots in the same row or in the same column, and another such pair for plots which are in different rows and different columns.

Even more technical details

Suppose that there are v treatments, each with replication r, so that the number N of plots is given by $N=v r$. If Equations (1) and (2) are satisfied, then

$$
\begin{equation*}
p_{1}=\frac{1}{v} \frac{r-1}{N-1} \tag{3}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{2}=\frac{1}{v} \frac{r}{N-1} . \tag{4}
\end{equation*}
$$

For an experiment in blocks, there is one such pair of probabilities for plots in the same block, and another such pair for plots in different blocks.
For a Latin square, there is one such pair for plots in the same row or in the same column, and another such pair for plots which are in different rows and different columns.
Here we restrict attention to unblocked experiments where the plots form a single line. Denote the design for such an unblocked experiment by Δ.

First strongly valid method, using permutation groups

A group of permutations of the set of N plots is doubly transitive if, whenever α, β, γ and δ are plots with $\alpha \neq \beta$ and $\gamma \neq \delta$, there is a some permutation in the group which takes α to γ and β to δ.

First strongly valid method, using permutation groups

A group of permutations of the set of N plots is doubly transitive if, whenever α, β, γ and δ are plots with $\alpha \neq \beta$ and $\gamma \neq \delta$, there is a some permutation in the group which takes α to γ and β to δ.
Applying a random permutation from such a group to a carefully chosen initial layout has the potential to avoid some bad patterns.

First strongly valid method, using permutation groups

A group of permutations of the set of N plots is doubly transitive if, whenever α, β, γ and δ are plots with $\alpha \neq \beta$ and $\gamma \neq \delta$, there is a some permutation in the group which takes α to γ and β to δ.
Applying a random permutation from such a group to a carefully chosen initial layout has the potential to avoid some bad patterns.
This method was used in the more complicated framework of Latin squares by Grundy and Healy, who gave an example in J. Roy. Stat. Soc. B in 1950.

First strongly valid method, using permutation groups

A group of permutations of the set of N plots is doubly transitive if, whenever α, β, γ and δ are plots with $\alpha \neq \beta$ and $\gamma \neq \delta$, there is a some permutation in the group which takes α to γ and β to δ.
Applying a random permutation from such a group to a carefully chosen initial layout has the potential to avoid some bad patterns.
This method was used in the more complicated framework of Latin squares by Grundy and Healy, who gave an example in J. Roy. Stat. Soc. B in 1950.
In 1976-1978, RAB was employed as a post-doc at the Agricultural Research Council Unit of Statistics (in Edinburgh) because her DPhil thesis was about finite permutation groups. This led to a paper on restricted randomization for Latin squares (and other things) in Biometrika in 1983.

Second strongly valid method

A second way of achieving strongly valid randomization was proposed by Youden in his special invited paper on Randomization and experimentation presented at the annual meeting of the Institute of Mathematical Statistics in Detroit in September 1956.

Second strongly valid method

A second way of achieving strongly valid randomization was proposed by Youden in his special invited paper on Randomization and experimentation presented at the annual meeting of the Institute of Mathematical Statistics in Detroit in September 1956.
He introduced the term constrained randomization, but the list of keywords contains restricted randomization.

Second strongly valid method

A second way of achieving strongly valid randomization was proposed by Youden in his special invited paper on Randomization and experimentation presented at the annual meeting of the Institute of Mathematical Statistics in Detroit in September 1956.
He introduced the term constrained randomization, but the list of keywords contains restricted randomization.
He created a written version of his talk, but did not publish it.

Second strongly valid method

A second way of achieving strongly valid randomization was proposed by Youden in his special invited paper on Randomization and experimentation presented at the annual meeting of the Institute of Mathematical Statistics in Detroit in September 1956.
He introduced the term constrained randomization, but the list of keywords contains restricted randomization.
He created a written version of his talk, but did not publish it. After his death in 1971, Youden's widow and the IMS agreed to the publication of Youden's preprint in Technometrics in 1972.

Using an auxiliary rectangle

Youden's method uses an auxiliary $m \times N$ rectangle, for some integer m.

Using an auxiliary rectangle

Youden's method uses an auxiliary $m \times N$ rectangle, for some integer m. The columns are labelled by the N plots.

Using an auxiliary rectangle

Youden's method uses an auxiliary $m \times N$ rectangle, for some integer m.
The columns are labelled by the N plots.
Each row has v letters, each occurring r times.

Using an auxiliary rectangle

Youden's method uses an auxiliary $m \times N$ rectangle, for some integer m.
The columns are labelled by the N plots.
Each row has v letters, each occurring r times. Thus each row is a potential layout for the design.

Using an auxiliary rectangle

Youden's method uses an auxiliary $m \times N$ rectangle, for some integer m.
The columns are labelled by the N plots.
Each row has v letters, each occurring r times.
Thus each row is a potential layout for the design.
To avoid bias, Youden specified that, for each pair of plots, there are precisely λ rows in which those two plots have the same letter.

Using an auxiliary rectangle

Youden's method uses an auxiliary $m \times N$ rectangle, for some integer m.
The columns are labelled by the N plots.
Each row has v letters, each occurring r times.
Thus each row is a potential layout for the design.
To avoid bias, Youden specified that, for each pair of plots, there are precisely λ rows in which those two plots have the same letter.

Given such a rectangle, Youden proposed randomizing by choosing one of the rows with equal probability and then randomizing the actual treatments to the letters in that row.

An example from Youden's paper

Suppose that $v=3$ and $r=2$.

An example from Youden's paper

Suppose that $v=3$ and $r=2$.

1	2	3	4	5	6
A	A	B	C	B	C
A	B	A	C	C	B
A	B	B	A	C	C
A	B	C	B	A	C
A	B	C	C	B	A

An example from Youden's paper

Suppose that $v=3$ and $r=2$.

1	2	3	4	5	6
A	A	B	C	B	C
A	B	A	C	C	B
A	B	B	A	C	C
A	B	C	B	A	C
A	B	C	C	B	A

There are $3 \times 2=6$ columns.

An example from Youden's paper

Suppose that $v=3$ and $r=2$.

1	2	3	4	5	6
A	A	B	C	B	C
A	B	A	C	C	B
A	B	B	A	C	C
A	B	C	B	A	C
A	B	C	C	B	A

There are $3 \times 2=6$ columns.
Each row has three letters, each occurring twice.

An example from Youden's paper

Suppose that $v=3$ and $r=2$.

1	2	3	4	5	6
A	A	B	C	B	C
A	B	A	C	C	B
A	B	B	A	C	C
A	B	C	B	A	C
A	B	C	C	B	A

There are $3 \times 2=6$ columns.
Each row has three letters, each occurring twice. There is no "very bad" row, such as $A A B B C C$.

An example from Youden's paper

Suppose that $v=3$ and $r=2$.

1	2	3	4	5	6
A	A	B	C	B	C
A	B	A	C	C	B
A	B	B	A	C	C
A	B	C	B	A	C
A	B	C	C	B	A

There are $3 \times 2=6$ columns.
Each row has three letters, each occurring twice.
There is no "very bad" row, such as $A A B B C C$.
Each pair of columns have the same letter in precisely one row.

An example from Youden's paper

Suppose that $v=3$ and $r=2$.

1	2	3	4	5	6
A	A	B	C	B	C
A	B	A	C	C	B
A	B	B	A	C	C
A	B	C	B	A	C
A	B	C	C	B	A

There are $3 \times 2=6$ columns.
Each row has three letters, each occurring twice.
There is no "very bad" row, such as $A A B B C C$.
Each pair of columns have the same letter in precisely one row.

An example from Youden's paper

Suppose that $v=3$ and $r=2$.

1	2	3	4	5	6
A	A	B	C	B	C
A	B	A	C	C	B
A	B	B	A	C	C
A	B	C	B	A	C
A	B	C	C	B	A

There are $3 \times 2=6$ columns.
Each row has three letters, each occurring twice.
There is no "very bad" row, such as $A A B B C C$.
Each pair of columns have the same letter in precisely one row.

An example from Youden's paper

Suppose that $v=3$ and $r=2$.

1	2	3	4	5	6
A	A	B	C	B	C
A	B	A	C	C	B
A	B	B	A	C	C
A	B	C	B	A	C
A	B	C	C	B	A

There are $3 \times 2=6$ columns.
Each row has three letters, each occurring twice.
There is no "very bad" row, such as $A A B B C C$.
Each pair of columns have the same letter in precisely one row.

An example from Youden's paper

Suppose that $v=3$ and $r=2$.

1	2	3	4	5	6
A	A	B	C	B	C
A	B	A	C	C	B
A	B	B	A	C	C
A	B	C	B	A	C
A	B	C	C	B	A

There are $3 \times 2=6$ columns.
Each row has three letters, each occurring twice.
There is no "very bad" row, such as $A A B B C C$.
Each pair of columns have the same letter in precisely one row.

An example from Youden's paper

Suppose that $v=3$ and $r=2$.

1	2	3	4	5	6
A	A	B	C	B	C
A	B	A	C	C	B
A	B	B	A	C	C
A	B	C	B	A	C
A	B	C	C	B	A

There are $3 \times 2=6$ columns.
Each row has three letters, each occurring twice.
There is no "very bad" row, such as $A A B B C C$.
Each pair of columns have the same letter in precisely one row.

An example from Youden's paper

Suppose that $v=3$ and $r=2$.

1	2	3	4	5	6
A	A	B	C	B	C
A	B	A	C	C	B
A	B	B	A	C	C
A	B	C	B	A	C
A	B	C	C	B	A

There are $3 \times 2=6$ columns.
Each row has three letters, each occurring twice.
There is no "very bad" row, such as $A A B B C C$.
Each pair of columns have the same letter in precisely one row.

An example from Youden's paper

Suppose that $v=3$ and $r=2$.

1	2	3	4	5	6
A	A	B	C	B	C
A	B	A	C	C	B
A	B	B	A	C	C
A	B	C	B	A	C
A	B	C	C	B	A

There are $3 \times 2=6$ columns.
Each row has three letters, each occurring twice.
There is no "very bad" row, such as $A A B B C C$.
Each pair of columns have the same letter in precisely one row.

An example from Youden's paper

Suppose that $v=3$ and $r=2$.

1	2	3	4	5	6
A	A	B	C	B	C
A	B	A	C	C	B
A	B	B	A	C	C
A	B	C	B	A	C
A	B	C	C	B	A

There are $3 \times 2=6$ columns.
Each row has three letters, each occurring twice.
There is no "very bad" row, such as $A A B B C C$.
Each pair of columns have the same letter in precisely one row.

An example from Youden's paper

Suppose that $v=3$ and $r=2$.

1	2	3	4	5	6
A	A	B	C	B	C
A	B	A	C	C	B
A	B	B	A	C	C
A	B	C	B	A	C
A	B	C	C	B	A

There are $3 \times 2=6$ columns.
Each row has three letters, each occurring twice.
There is no "very bad" row, such as $A A B B C C$.
Each pair of columns have the same letter in precisely one row.

An example from Youden's paper

Suppose that $v=3$ and $r=2$.

1	2	3	4	5	6
A	A	B	C	B	C
A	B	A	C	C	B
A	B	B	A	C	C
A	B	C	B	A	C
A	B	C	C	B	A

There are $3 \times 2=6$ columns.
Each row has three letters, each occurring twice.
There is no "very bad" row, such as $A A B B C C$.
Each pair of columns have the same letter in precisely one row.

An example from Youden's paper

Suppose that $v=3$ and $r=2$.

1	2	3	4	5	6
A	A	B	C	B	C
A	B	A	C	C	B
A	B	B	A	C	C
A	B	C	B	A	C
A	B	C	C	B	A

There are $3 \times 2=6$ columns.
Each row has three letters, each occurring twice.
There is no "very bad" row, such as $A A B B C C$.
Each pair of columns have the same letter in precisely one row.

An example from Youden's paper

Suppose that $v=3$ and $r=2$.

1	2	3	4	5	6
A	A	B	C	B	C
A	B	A	C	C	B
A	B	B	A	C	C
A	B	C	B	A	C
A	B	C	C	B	A

There are $3 \times 2=6$ columns.
Each row has three letters, each occurring twice.
There is no "very bad" row, such as $A A B B C C$.
Each pair of columns have the same letter in precisely one row.

An example from Youden's paper

Suppose that $v=3$ and $r=2$.

1	2	3	4	5	6
A	A	B	C	B	C
A	B	A	C	C	B
A	B	B	A	C	C
A	B	C	B	A	C
A	B	C	C	B	A

There are $3 \times 2=6$ columns.
Each row has three letters, each occurring twice.
There is no "very bad" row, such as $A A B B C C$.
Each pair of columns have the same letter in precisely one row.

An example from Youden's paper

Suppose that $v=3$ and $r=2$.

1	2	3	4	5	6
A	A	B	C	B	C
A	B	A	C	C	B
A	B	B	A	C	C
A	B	C	B	A	C
A	B	C	C	B	A

There are $3 \times 2=6$ columns.
Each row has three letters, each occurring twice.
There is no "very bad" row, such as $A A B B C C$.
Each pair of columns have the same letter in precisely one row.

An example from Youden's paper

Suppose that $v=3$ and $r=2$.

1	2	3	4	5	6
A	A	B	C	B	C
A	B	A	C	C	B
A	B	B	A	C	C
A	B	C	B	A	C
A	B	C	C	B	A

There are $3 \times 2=6$ columns.
Each row has three letters, each occurring twice.
There is no "very bad" row, such as $A A B B C C$.
Each pair of columns have the same letter in precisely one row.
Randomize by choosing one of the 5 rows with equal probability, then randomizing the 3 treatments to A, B and C.

An alternative explanation of Youden's method

Although Youden did not use this terminology, we can explain his approach in terms of an auxiliary incomplete-block design Γ for N treatments in blocks of size r.

An alternative explanation of Youden's method

Although Youden did not use this terminology, we can explain his approach in terms of an auxiliary incomplete-block design Γ for N treatments in blocks of size r.

1	2	3	4	5	6
A	A	B	C	B	C
A	B	A	C	C	B
A	B	B	A	C	C
A	B	C	B	A	C
A	B	C	C	B	A

$$
\begin{array}{lll}
\{1,2\} & \{3,5\} & \{4,6\} \\
\{1,3\} & \{2,6\} & \{4,5\} \\
\{1,4\} & \{2,3\} & \{5,6\} \\
\{1,5\} & \{2,4\} & \{3,6\} \\
\{1,6\} & \{2,5\} & \{3,4\}
\end{array}
$$

An alternative explanation of Youden's method

Although Youden did not use this terminology, we can explain his approach in terms of an auxiliary incomplete-block design Γ for N treatments in blocks of size r.

1	2	3	4	5	6
A	A	B	C	B	C
A	B	A	C	C	B
A	B	B	A	C	C
A	B	C	B	A	C
A	B	C	C	B	A

$$
\begin{array}{lll}
\{1,2\} & \{3,5\} & \{4,6\} \\
\{1,3\} & \{2,6\} & \{4,5\} \\
\{1,4\} & \{2,3\} & \{5,6\} \\
\{1,5\} & \{2,4\} & \{3,6\} \\
\{1,6\} & \{2,5\} & \{3,4\}
\end{array}
$$

In each row, the letters give the blocks of Γ.

An alternative explanation of Youden's method

Although Youden did not use this terminology, we can explain his approach in terms of an auxiliary incomplete-block design Γ for N treatments in blocks of size r.

1	2	3	4	5	6
A	A	B	C	B	C
A	B	A	C	C	B
A	B	B	A	C	C
A	B	C	B	A	C
A	B	C	C	B	A

$\{1,2\}$	$\{3,5\}$	$\{4,6\}$
$\{1,3\}$	$\{2,6\}$	$\{4,5\}$
$\{1,4\}$	$\{2,3\}$	$\{5,6\}$
$\{1,5\}$	$\{2,4\}$	$\{3,6\}$
$\{1,6\}$	$\{2,5\}$	$\{3,4\}$

In each row, the letters give the blocks of Γ.
So Γ has blocks of size r,

An alternative explanation of Youden's method

Although Youden did not use this terminology, we can explain his approach in terms of an auxiliary incomplete-block design Γ for N treatments in blocks of size r.

1	2	3	4	5	6
A	A	B	C	B	C
A	B	A	C	C	B
A	B	B	A	C	C
A	B	C	B	A	C
A	B	C	C	B	A

$\{1,2\}$	$\{3,5\}$	$\{4,6\}$
$\{1,3\}$	$\{2,6\}$	$\{4,5\}$
$\{1,4\}$	$\{2,3\}$	$\{5,6\}$
$\{1,5\}$	$\{2,4\}$	$\{3,6\}$
$\{1,6\}$	$\{2,5\}$	$\{3,4\}$

In each row, the letters give the blocks of Γ.
So Γ has blocks of size r, and is resolved, with replication m.

An alternative explanation of Youden's method

Although Youden did not use this terminology, we can explain his approach in terms of an auxiliary incomplete-block design Γ for N treatments in blocks of size r.

1	2	3	4	5	6
A	A	B	C	B	C
A	B	A	C	C	B
A	B	B	A	C	C
A	B	C	B	A	C
A	B	C	C	B	A

$\{1,2\}$	$\{3,5\}$	$\{4,6\}$
$\{1,3\}$	$\{2,6\}$	$\{4,5\}$
$\{1,4\}$	$\{2,3\}$	$\{5,6\}$
$\{1,5\}$	$\{2,4\}$	$\{3,6\}$
$\{1,6\}$	$\{2,5\}$	$\{3,4\}$

In each row, the letters give the blocks of Γ.
So Γ has blocks of size r, and is resolved, with replication m. The condition on pairs of columns shows that Γ is balanced, with concurrence λ.

An alternative explanation of Youden's method

Although Youden did not use this terminology, we can explain his approach in terms of an auxiliary incomplete-block design Γ for N treatments in blocks of size r.

1	2	3	4	5	6
A	A	B	C	B	C
A	B	A	C	C	B
A	B	B	A	C	C
A	B	C	B	A	C
A	B	C	C	B	A

$\{1,2\}$	$\{3,5\}$	$\{4,6\}$
$\{1,3\}$	$\{2,6\}$	$\{4,5\}$
$\{1,4\}$	$\{2,3\}$	$\{5,6\}$
$\{1,5\}$	$\{2,4\}$	$\{3,6\}$
$\{1,6\}$	$\{2,5\}$	$\{3,4\}$

In each row, the letters give the blocks of Γ.
So Γ has blocks of size r, and is resolved, with replication m. The condition on pairs of columns shows that Γ is balanced, with concurrence λ.

An alternative explanation of Youden's method

Although Youden did not use this terminology, we can explain his approach in terms of an auxiliary incomplete-block design Γ for N treatments in blocks of size r.

1	2	3	4	5	6
A	A	B	C	B	C
A	B	A	C	C	B
A	B	B	A	C	C
A	B	C	B	A	C
A	B	C	C	B	A

$\{1,2\}$	$\{3,5\}$	$\{4,6\}$
$\{1,3\}$	$\{2,6\}$	$\{4,5\}$
$\{1,4\}$	$\{2,3\}$	$\{5,6\}$
$\{1,5\}$	$\{2,4\}$	$\{3,6\}$
$\{1,6\}$	$\{2,5\}$	$\{3,4\}$

In each row, the letters give the blocks of Γ.
So Γ has blocks of size r, and is resolved, with replication m. The condition on pairs of columns shows that Γ is balanced, with concurrence λ.

An alternative explanation of Youden's method

Although Youden did not use this terminology, we can explain his approach in terms of an auxiliary incomplete-block design Γ for N treatments in blocks of size r.

1	2	3	4	5	6
A	A	B	C	B	C
A	B	A	C	C	B
A	B	B	A	C	C
A	B	C	B	A	C
A	B	C	C	B	A

$\{1,2\}$	$\{3,5\}$	$\{4,6\}$
$\{1,3\}$	$\{2,6\}$	$\{4,5\}$
$\{1,4\}$	$\{2,3\}$	$\{5,6\}$
$\{1,5\}$	$\{2,4\}$	$\{3,6\}$
$\{1,6\}$	$\{2,5\}$	$\{3,4\}$

In each row, the letters give the blocks of Γ.
So Γ has blocks of size r, and is resolved, with replication m. The condition on pairs of columns shows that Γ is balanced, with concurrence λ.

An alternative explanation of Youden's method

Although Youden did not use this terminology, we can explain his approach in terms of an auxiliary incomplete-block design Γ for N treatments in blocks of size r.

1	2	3	4	5	6
A	A	B	C	B	C
A	B	A	C	C	B
A	B	B	A	C	C
A	B	C	B	A	C
A	B	C	C	B	A

$\{1,2\}$	$\{3,5\}$	$\{4,6\}$
$\{1,3\}$	$\{2,6\}$	$\{4,5\}$
$\{1,4\}$	$\{2,3\}$	$\{5,6\}$
$\{1,5\}$	$\{2,4\}$	$\{3,6\}$
$\{1,6\}$	$\{2,5\}$	$\{3,4\}$

In each row, the letters give the blocks of Γ.
So Γ has blocks of size r, and is resolved, with replication m. The condition on pairs of columns shows that Γ is balanced, with concurrence λ.

An alternative explanation of Youden's method

Although Youden did not use this terminology, we can explain his approach in terms of an auxiliary incomplete-block design Γ for N treatments in blocks of size r.

1	2	3	4	5	6
A	A	B	C	B	C
A	B	A	C	C	B
A	B	B	A	C	C
A	B	C	B	A	C
A	B	C	C	B	A

$\{1,2\}$	$\{3,5\}$	$\{4,6\}$
$\{1,3\}$	$\{2,6\}$	$\{4,5\}$
$\{1,4\}$	$\{2,3\}$	$\{5,6\}$
$\{1,5\}$	$\{2,4\}$	$\{3,6\}$
$\{1,6\}$	$\{2,5\}$	$\{3,4\}$

In each row, the letters give the blocks of Γ.
So Γ has blocks of size r, and is resolved, with replication m. The condition on pairs of columns shows that Γ is balanced, with concurrence λ.

An alternative explanation of Youden's method

Although Youden did not use this terminology, we can explain his approach in terms of an auxiliary incomplete-block design Γ for N treatments in blocks of size r.

1	2	3	4	5	6
A	A	B	C	B	C
A	B	A	C	C	B
A	B	B	A	C	C
A	B	C	B	A	C
A	B	C	C	B	A

$\{1,2\}$	$\{3,5\}$	$\{4,6\}$
$\{1,3\}$	$\{2,6\}$	$\{4,5\}$
$\{1,4\}$	$\{2,3\}$	$\{5,6\}$
$\{1,5\}$	$\{2,4\}$	$\{3,6\}$
$\{1,6\}$	$\{2,5\}$	$\{3,4\}$

In each row, the letters give the blocks of Γ.
So Γ has blocks of size r, and is resolved, with replication m. The condition on pairs of columns shows that Γ is balanced, with concurrence λ.

An alternative explanation of Youden's method

Although Youden did not use this terminology, we can explain his approach in terms of an auxiliary incomplete-block design Γ for N treatments in blocks of size r.

1	2	3	4	5	6
A	A	B	C	B	C
A	B	A	C	C	B
A	B	B	A	C	C
A	B	C	B	A	C
A	B	C	C	B	A

$\{1,2\}$	$\{3,5\}$	$\{4,6\}$
$\{1,3\}$	$\{2,6\}$	$\{4,5\}$
$\{1,4\}$	$\{2,3\}$	$\{5,6\}$
$\{1,5\}$	$\{2,4\}$	$\{3,6\}$
$\{1,6\}$	$\{2,5\}$	$\{3,4\}$

In each row, the letters give the blocks of Γ.
So Γ has blocks of size r, and is resolved, with replication m. The condition on pairs of columns shows that Γ is balanced, with concurrence λ.

An alternative explanation of Youden's method

Although Youden did not use this terminology, we can explain his approach in terms of an auxiliary incomplete-block design Γ for N treatments in blocks of size r.

1	2	3	4	5	6
A	A	B	C	B	C
A	B	A	C	C	B
A	B	B	A	C	C
A	B	C	B	A	C
A	B	C	C	B	A

$\{1,2\}$	$\{3,5\}$	$\{4,6\}$
$\{1,3\}$	$\{2,6\}$	$\{4,5\}$
$\{1,4\}$	$\{2,3\}$	$\{5,6\}$
$\{1,5\}$	$\{2,4\}$	$\{3,6\}$
$\{1,6\}$	$\{2,5\}$	$\{3,4\}$

In each row, the letters give the blocks of Γ.
So Γ has blocks of size r, and is resolved, with replication m. The condition on pairs of columns shows that Γ is balanced, with concurrence λ.

An alternative explanation of Youden's method

Although Youden did not use this terminology, we can explain his approach in terms of an auxiliary incomplete-block design Γ for N treatments in blocks of size r.

1	2	3	4	5	6
A	A	B	C	B	C
A	B	A	C	C	B
A	B	B	A	C	C
A	B	C	B	A	C
A	B	C	C	B	A

$\{1,2\}$	$\{3,5\}$	$\{4,6\}$
$\{1,3\}$	$\{2,6\}$	$\{4,5\}$
$\{1,4\}$	$\{2,3\}$	$\{5,6\}$
$\{1,5\}$	$\{2,4\}$	$\{3,6\}$
$\{1,6\}$	$\{2,5\}$	$\{3,4\}$

In each row, the letters give the blocks of Γ.
So Γ has blocks of size r, and is resolved, with replication m. The condition on pairs of columns shows that Γ is balanced, with concurrence λ.

An alternative explanation of Youden's method

Although Youden did not use this terminology, we can explain his approach in terms of an auxiliary incomplete-block design Γ for N treatments in blocks of size r.

1	2	3	4	5	6
A	A	B	C	B	C
A	B	A	C	C	B
A	B	B	A	C	C
A	B	C	B	A	C
A	B	C	C	B	A

$\{1,2\}$	$\{3,5\}$	$\{4,6\}$
$\{1,3\}$	$\{2,6\}$	$\{4,5\}$
$\{1,4\}$	$\{2,3\}$	$\{5,6\}$
$\{1,5\}$	$\{2,4\}$	$\{3,6\}$
$\{1,6\}$	$\{2,5\}$	$\{3,4\}$

In each row, the letters give the blocks of Γ.
So Γ has blocks of size r, and is resolved, with replication m. The condition on pairs of columns shows that Γ is balanced, with concurrence λ.

An alternative explanation of Youden's method

Although Youden did not use this terminology, we can explain his approach in terms of an auxiliary incomplete-block design Γ for N treatments in blocks of size r.

1	2	3	4	5	6
A	A	B	C	B	C
A	B	A	C	C	B
A	B	B	A	C	C
A	B	C	B	A	C
A	B	C	C	B	A

$\{1,2\}$	$\{3,5\}$	$\{4,6\}$
$\{1,3\}$	$\{2,6\}$	$\{4,5\}$
$\{1,4\}$	$\{2,3\}$	$\{5,6\}$
$\{1,5\}$	$\{2,4\}$	$\{3,6\}$
$\{1,6\}$	$\{2,5\}$	$\{3,4\}$

In each row, the letters give the blocks of Γ.
So Γ has blocks of size r, and is resolved, with replication m. The condition on pairs of columns shows that Γ is balanced, with concurrence λ.

An alternative explanation of Youden's method

Although Youden did not use this terminology, we can explain his approach in terms of an auxiliary incomplete-block design Γ for N treatments in blocks of size r.

1	2	3	4	5	6
A	A	B	C	B	C
A	B	A	C	C	B
A	B	B	A	C	C
A	B	C	B	A	C
A	B	C	C	B	A

$\{1,2\}$	$\{3,5\}$	$\{4,6\}$
$\{1,3\}$	$\{2,6\}$	$\{4,5\}$
$\{1,4\}$	$\{2,3\}$	$\{5,6\}$
$\{1,5\}$	$\{2,4\}$	$\{3,6\}$
$\{1,6\}$	$\{2,5\}$	$\{3,4\}$

In each row, the letters give the blocks of Γ.
So Γ has blocks of size r, and is resolved, with replication m. The condition on pairs of columns shows that Γ is balanced, with concurrence λ.

An alternative explanation of Youden's method

Although Youden did not use this terminology, we can explain his approach in terms of an auxiliary incomplete-block design Γ for N treatments in blocks of size r.

1	2	3	4	5	6
A	A	B	C	B	C
A	B	A	C	C	B
A	B	B	A	C	C
A	B	C	B	A	C
A	B	C	C	B	A

$\{1,2\}$	$\{3,5\}$	$\{4,6\}$
$\{1,3\}$	$\{2,6\}$	$\{4,5\}$
$\{1,4\}$	$\{2,3\}$	$\{5,6\}$
$\{1,5\}$	$\{2,4\}$	$\{3,6\}$
$\{1,6\}$	$\{2,5\}$	$\{3,4\}$

In each row, the letters give the blocks of Γ.
So Γ has blocks of size r, and is resolved, with replication m. The condition on pairs of columns shows that Γ is balanced, with concurrence λ.

An alternative explanation of Youden's method

Although Youden did not use this terminology, we can explain his approach in terms of an auxiliary incomplete-block design Γ for N treatments in blocks of size r.

1	2	3	4	5	6
A	A	B	C	B	C
A	B	A	C	C	B
A	B	B	A	C	C
A	B	C	B	A	C
A	B	C	C	B	A

$\{1,2\}$	$\{3,5\}$	$\{4,6\}$
$\{1,3\}$	$\{2,6\}$	$\{4,5\}$
$\{1,4\}$	$\{2,3\}$	$\{5,6\}$
$\{1,5\}$	$\{2,4\}$	$\{3,6\}$
$\{1,6\}$	$\{2,5\}$	$\{3,4\}$

In each row, the letters give the blocks of Γ.
So Γ has blocks of size r, and is resolved, with replication m. The condition on pairs of columns shows that Γ is balanced, with concurrence λ.

Our approach

We start by finding a resolved balanced incomplete-block design Γ for N treatments in m replicates of blocks of size r, for some value of m.

Our approach

We start by finding a resolved balanced incomplete-block design Γ for N treatments in m replicates of blocks of size r, for some value of m.
We show this auxiliary design Γ as an $m \times N$ rectangle.

Our approach

We start by finding a resolved balanced incomplete-block design Γ for N treatments in m replicates of blocks of size r, for some value of m.
We show this auxiliary design Γ as an $m \times N$ rectangle.
If α and β are the labels of two different columns, then there are precisely λ rows which have the same letter in both of those columns.

Our approach

We start by finding a resolved balanced incomplete-block design Γ for N treatments in m replicates of blocks of size r, for some value of m.
We show this auxiliary design Γ as an $m \times N$ rectangle.
If α and β are the labels of two different columns, then there are precisely λ rows which have the same letter in both of those columns.

$$
\text { So } \lambda=m(r-1) /(N-1) \text {. }
$$

Our approach

We start by finding a resolved balanced incomplete-block design Γ for N treatments in m replicates of blocks of size r, for some value of m.
We show this auxiliary design Γ as an $m \times N$ rectangle.
If α and β are the labels of two different columns, then there are precisely λ rows which have the same letter in both of those columns.
So $\lambda=m(r-1) /(N-1)$.
The method of randomization now has two steps.

1. Choose a row of the $m \times N$ rectangle at random, with probability $1 / \mathrm{m}$ for each row.

Our approach

We start by finding a resolved balanced incomplete-block design Γ for N treatments in m replicates of blocks of size r, for some value of m.
We show this auxiliary design Γ as an $m \times N$ rectangle.
If α and β are the labels of two different columns, then there are precisely λ rows which have the same letter in both of those columns.
So $\lambda=m(r-1) /(N-1)$.
The method of randomization now has two steps.

1. Choose a row of the $m \times N$ rectangle at random, with probability $1 / m$ for each row.
2. Randomize the allocation of the treatments in our design Δ to the v letters in that row.

Our approach, continued

The first step ensures that, for each pair of distinct columns α and $\beta, P(T(\alpha)=T(\beta))=\lambda / m$.

Our approach, continued

The first step ensures that, for each pair of distinct columns α and $\beta, P(T(\alpha)=T(\beta))=\lambda / m$. Then the second step shows that this probability is equally split between the v treatments in Δ : hence

$$
p_{1}=\frac{1}{v} \frac{\lambda}{m}=\frac{1}{v} \frac{r-1}{N-1},
$$

so that Equations (1) and (3) are satisfied.

Our approach, continued

The first step ensures that, for each pair of distinct columns α and $\beta, P(T(\alpha)=T(\beta))=\lambda / m$. Then the second step shows that this probability is equally split between the v treatments in Δ : hence

$$
p_{1}=\frac{1}{v} \frac{\lambda}{m}=\frac{1}{v} \frac{r-1}{N-1},
$$

so that Equations (1) and (3) are satisfied.
Likewise, $P(T(\alpha) \neq T(\beta))=(m-\lambda) / m$, and this probability is equally split between the $v(v-1)$ ordered pairs of distinct treatments in Δ, and so

$$
p_{2}=\frac{1}{v(v-1)} \frac{m-\lambda}{m}=\frac{1}{v(v-1)} \frac{(N-r)}{N-1}=\frac{1}{v} \frac{r}{N-1},
$$

so that Equations (2) and (4) are satisfied.

Our approach, continued

The first step ensures that, for each pair of distinct columns α and $\beta, P(T(\alpha)=T(\beta))=\lambda / m$. Then the second step shows that this probability is equally split between the v treatments in Δ : hence

$$
p_{1}=\frac{1}{v} \frac{\lambda}{m}=\frac{1}{v} \frac{r-1}{N-1},
$$

so that Equations (1) and (3) are satisfied.
Likewise, $P(T(\alpha) \neq T(\beta))=(m-\lambda) / m$, and this probability is equally split between the $v(v-1)$ ordered pairs of distinct treatments in Δ, and so

$$
p_{2}=\frac{1}{v(v-1)} \frac{m-\lambda}{m}=\frac{1}{v(v-1)} \frac{(N-r)}{N-1}=\frac{1}{v} \frac{r}{N-1}
$$

so that Equations (2) and (4) are satisfied.
As with the first method, the task now is to find a permutation of the columns of the $m \times N$ rectangle such none of the m rows gives a bad pattern.

A solution to the introductory example

There are three treatments, each replicated three times, so $v=r=3$ and $N=9$.

A solution to the introductory example

There are three treatments, each replicated three times, so $v=r=3$ and $N=9$. Here is a solution with $m=4$.

The auxiliary design Γ is a balanced square lattice design for 9 treatments.

A solution to the introductory example

There are three treatments, each replicated three times, so $v=r=3$ and $N=9$.
Here is a solution with $m=4$.
The auxiliary design Γ is a balanced square lattice design for 9 treatments.

1	2	3	4	5	6	7	8	9
A	B	A	C	A	C	C	B	B
A	A	B	B	C	A	C	B	C
A	B	B	A	C	C	B	C	A
A	B	C	B	B	C	A	A	C

$\{1,3,5\}$	$\{2,8,9\}$	$\{4,6,7\}$
$\{1,2,6\}$	$\{3,4,8\}$	$\{5,7,9\}$
$\{1,4,9\}$	$\{2,3,7\}$	$\{5,6,8\}$
$\{1,7,8\}$	$\{2,4,5\}$	$\{3,6,9\}$

A solution to the introductory example

There are three treatments, each replicated three times, so $v=r=3$ and $N=9$.
Here is a solution with $m=4$.
The auxiliary design Γ is a balanced square lattice design for 9 treatments.

1	2	3	4	5	6	7	8	9
A	B	A	C	A	C	C	B	B
A	A	B	B	C	A	C	B	C
A	B	B	A	C	C	B	C	A
A	B	C	B	B	C	A	A	C

$\{1,3,5\}$	$\{2,8,9\}$	$\{4,6,7\}$
$\{1,2,6\}$	$\{3,4,8\}$	$\{5,7,9\}$
$\{1,4,9\}$	$\{2,3,7\}$	$\{5,6,8\}$
$\{1,7,8\}$	$\{2,4,5\}$	$\{3,6,9\}$

Each row contains exactly two adjacent pairs of columns with the same letter.

A solution to the introductory example

There are three treatments, each replicated three times,
so $v=r=3$ and $N=9$.
Here is a solution with $m=4$.
The auxiliary design Γ is a balanced square lattice design for 9 treatments.

1	2	3	4	5	6	7	8	9
A	B	A	C	A	C	C	B	B
A	A	B	B	C	A	C	B	C
A	B	B	A	C	C	B	C	A
A	B	C	B	B	C	A	A	C

$\{1,3,5\}$	$\{2,8,9\}$	$\{4,6,7\}$
$\{1,2,6\}$	$\{3,4,8\}$	$\{5,7,9\}$
$\{1,4,9\}$	$\{2,3,7\}$	$\{5,6,8\}$
$\{1,7,8\}$	$\{2,4,5\}$	$\{3,6,9\}$

Each row contains exactly two adjacent pairs of columns with the same letter.
Moreover, no row has all three occurrences of any letter in either the first or last four columns.

A potential catalogue

We are working on creating a catalogue of rectangles which give valid restricted randomization.

A potential catalogue

We are working on creating a catalogue of rectangles which give valid restricted randomization.
If a complete-block design is used then there are $d=(v-1)(r-1)$ degrees of freedom for error.

A potential catalogue

We are working on creating a catalogue of rectangles which give valid restricted randomization.
If a complete-block design is used then there are $d=(v-1)(r-1)$ degrees of freedom for error.
If $d \geq 10$ there should be enough power for detecting meaningful treatment differences.

A potential catalogue

We are working on creating a catalogue of rectangles which give valid restricted randomization.
If a complete-block design is used then there are $d=(v-1)(r-1)$ degrees of freedom for error.
If $d \geq 10$ there should be enough power for detecting meaningful treatment differences.
We are considering cases where $v r=N \leq 25$ and $d<10$.

A potential catalogue

We are working on creating a catalogue of rectangles which give valid restricted randomization.
If a complete-block design is used then there are $d=(v-1)(r-1)$ degrees of freedom for error.
If $d \geq 10$ there should be enough power for detecting meaningful treatment differences.
We are considering cases where $v r=N \leq 25$ and $d<10$.
The smallest case has $v=r=2$.
In this case we cannot avoid the layout $A A B B$, and so there is no method of valid restricted randomization.

A potential catalogue

We are working on creating a catalogue of rectangles which give valid restricted randomization.
If a complete-block design is used then there are $d=(v-1)(r-1)$ degrees of freedom for error.
If $d \geq 10$ there should be enough power for detecting meaningful treatment differences.
We are considering cases where $v r=N \leq 25$ and $d<10$.
The smallest case has $v=r=2$.
In this case we cannot avoid the layout $A A B B$, and so there is no method of valid restricted randomization.
When $v=2$ and $r=3$, then Γ must be a resolved balanced incomplete-block design for 6 treatments in blocks of size 3 . The smallest such design consists of all triples of treatments, and so we cannot avoid the layout $A A A B B B$.

Progress so far

We have good solutions for all other parameter combinations in our range with either $v=2$ or $r=2$.

Progress so far

We have good solutions for all other parameter combinations in our range with either $v=2$ or $r=2$.
Of the six remaining cases, we have so far found good solutions for three of them.

Progress so far

We have good solutions for all other parameter combinations in our range with either $v=2$ or $r=2$.
Of the six remaining cases, we have so far found good solutions for three of them.
For example, here is a valid restricted randomization scheme for $v=5$ and $r=3$.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
A	C	E	B	E	B	D	D	A	E	C	C	D	A	B
A	A	C	B	D	C	D	A	B	B	E	D	E	C	E
B	A	D	B	A	E	E	C	E	C	C	D	B	A	D
E	B	D	B	C	C	B	A	D	E	D	E	C	A	A
D	E	E	B	A	D	C	A	A	C	D	B	E	B	C
A	D	B	B	A	D	E	B	C	D	E	C	C	E	A
C	A	C	B	B	E	C	E	A	D	B	E	D	D	A

Progress so far

We have good solutions for all other parameter combinations in our range with either $v=2$ or $r=2$.
Of the six remaining cases, we have so far found good solutions for three of them.
For example, here is a valid restricted randomization scheme for $v=5$ and $r=3$.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
A	C	E	B	E	B	D	D	A	E	C	C	D	A	B
A	A	C	B	D	C	D	A	B	B	E	D	E	C	E
B	A	D	B	A	E	E	C	E	C	C	D	B	A	D
E	B	D	B	C	C	B	A	D	E	D	E	C	A	A
D	E	E	B	A	D	C	A	A	C	D	B	E	B	C
A	D	B	B	A	D	E	B	C	D	E	C	C	E	A
C	A	C	B	B	E	C	E	A	D	B	E	D	D	A

Two identical duads per row.

Progress so far

We have good solutions for all other parameter combinations in our range with either $v=2$ or $r=2$.
Of the six remaining cases, we have so far found good solutions for three of them.
For example, here is a valid restricted randomization scheme for $v=5$ and $r=3$.

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
A	C	E	B	E	B	D	D	A	E	C	C	D	A	B
A	A	C	B	D	C	D	A	B	B	E	D	E	C	E
B	A	D	B	A	E	E	C	E	C	C	D	B	A	D
E	B	D	B	C	C	B	A	D	E	D	E	C	A	A
D	E	E	B	A	D	C	A	A	C	D	B	E	B	C
A	D	B	B	A	D	E	B	C	D	E	C	C	E	A
C	A	C	B	B	E	C	E	A	D	B	E	D	D	A

Two identical duads per row. No identical triads in any row.

[^0]: Plot structure
 Inherent nuisance factors
 Maybe none
 Maybe blocks
 Maybe rows and columns Small units inside large units

