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Discrete choice experiments

Quantify consumer preferences
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Discrete choice experiments

- Quantify consumer preferences
- Preference data is collected
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Discrete choice experiments

- Quantify consumer preferences
- Preference data is collected
- Respondents are presented sets of alternatives (choice sets) and asked to choose
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Discrete choice experiments

- Quantify consumer preferences
- Preference data is collected

- Respondents are presented sets of alternatives (choice sets) and asked to choose
- Example: choosing to buy productA, B or C
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Discrete choice experiments

- Quantify consumer preferences
- Preference data is collected

- Respondents are presented sets of alternatives (choice sets) and asked to choose
- Example: choosing to buy productA, B or C

- Latent utility function — probability of making each decision
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Mixtures

e Many products and services can be described as mixtures of ingredients

e Examples:
o ingredients of bread
o ingredients used to make a cocktail
o types of fish used to make a fish patty
o primary colors to make new colors d
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Mixtures

- In mixture experiments, products are expressed as combinations of
proportions of ingredients
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Mixtures

- In mixture experiments, products are expressed as combinations of
proportions of ingredients

- The researchers' interest is generally in one or more characteristics of the
mixture

- In this work, the characteristic of interest is the preference of respondents

- Choice experiments are ideal to collect data for quantifying and modeling
preferences for mixtures
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Combining choice models and mixture
models
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Choice experiments with mixtures

This work

Choice Mixture

models models

- First example by Courcoux and Séménou (1997), preferences for cocktails
- mango juice [
- lemon juice @O
- blackcurrant syrup #

- 60 people, each making 8 pairwise comparisons
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Designing choice experiments with mixtures
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Designing choice experiments with mixtures

Experiments are expensive, cumbersome and time-consuming
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Designing choice experiments with mixtures

- Experiments are expensive, cumbersome and time-consuming
- Efficient experimental designs — reliable information
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Designing choice experiments with mixtures

- Experiments are expensive, cumbersome and time-consuming

- Efficient experimental designs — reliable information
- Optimal design of experiments: the branch of statistics that deals with the

construction of efficient experimental designs
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Optimality criteria for choice
experiments



Optimal choice experiments with mixtures

- D-optimal experimental designs — low-variance estimators
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Optimal choice experiments with mixtures

- D-optimal experimental designs — low-variance estimators

- We want to have a mixture that maximizes consumer preference
- Precise predictions are crucial

- l-optimal experimental designs — low-variance prediction
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Models for data from mixture experiments
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Models for data from mixture experiments

- Mixture models assume two or more ingredients and a response variable that
depends only on the relative proportions of the ingredients in the mixture

- Each mixture is described as a combination of g ingredient proportions (0 to 1)

- Constraint: proportions sum up to one — perfect collinearity

- Special- cubic Scheffé model

Y = Z,Bzxz+> }j ,Bzgxzxg+> > Z BijkTixiTk + €

=1 j=1i+1 1=1 j=14+1k=5+1
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Including process variables
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Including process variables

e The result of a mixture may depend on other characteristics
o Additional variables — process variables
o Second order Scheffé model

Y = Z’kak =+ Y Y 'Yklxkxl + Z Z’kakzz + Y 51 Q225 + Zazz + E

k=11l=k+1 =1 k=1 i=1 7=21+1
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Multinomial logit model for choice data

- Arespondent faces S choice sets involving J alternatives each
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Multinomial logit model for choice data

- Arespondent faces S choice sets involving J alternatives each
- Respondent chooses the alternative that has the highest perceived utility

- The probability that a respondent chooses alternative j € {7, ..., J} in choice
setsis
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Model for choice data concerning mixtures

- We assume vector x;, contains the g ingredient proportions and r process
variables
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Model for choice data concerning mixtures

- We assume vector x;, contains the g ingredient proportions and r process
variables

- Perceived utility modeled as

Ujs = f_(:fjs)TIB

q qg—1 q P q
— /Yz wzgs"' SJ SJ YikLijsLkjs SJ J/kakjszz‘ys
=1 k=i+1 =1 k=1
Z Z NikRijs<kjs +ZO€Z z]s
1=1 k=i+1
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D-optimal designs
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D-optimal designs

. D-optimality criterion

D =det (I"'(X,))

1/19 KU LEUVEN



D-optimal designs

. D-optimality criterion
P = det (I_l(X, ,3)) —» prior distribution 7T(,3)
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D-optimal designs

. D-optimality criterion

D =det (I"'(X,))

- Bayesian D-optimality criterion

Dp = /m det (I"'(X,B)) 7(B)dB
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D-optimal designs
- D-optimality criterion
D =det (I"'(X,))

- Bayesian D-optimality criterion

Dp = /m det (I"'(X,B)) 7(B)dB

- Numerical approximation to Bayesian D-optimality criterion

R
1 x (0
DBNEZldet(I (X,3 ))
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l-optimal designs
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l-optimal designs
- |-optimality criterion

7-— / £ (25) I 7N (X, B) f(2s)dae s
X
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l-optimal designs
- |-optimality criterion
1= / fT(‘BjS)I_I(X’ B) f(zjs)d s
X

= tr [I7}(X, B)W,]

W = / £ (50) 77 (@50)dacss

12/19 KU LEUVEN



l-optimal designs
- |-optimality criterion
7 [ £ (X, A (e1)des
X

= tr [I7}(X, B)W,]

- Bayesian l-optimality criterion

Ty= [ w[I(X.0)W.]~(B)s

W = [ £ (50) 77 (@50)dacss
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l-optimal designs
- |-optimality criterion
I [ @I (X, B @i)de;
X

= tr [I"1(X, B)W,]

- Bayesian l-optimality criterion

Ty = [ [1(X,0)W.] n(8)d8

- Numerical approximation to Bayesian I-optimality criterion

R
Ip ~ %th [I_l(Xaﬂ(i))Wu] W, = / f(xis) f' (zjs)de;s
i=1 X
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Cocktall preferences

- Original experiment by Courcoux and Semenou

- September 2019: students from KU Leuven replicated the experiment with 35
respondents

- Each respondent tasted 4 choice sets of size 2

- Simulated responses for temperature (process variable) — B parameter vector

- B used as prior distribution in a second-order Scheffé model and MNL model

for Bayesian D- and l-optimal designs
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Cocktall preferences
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Cocktall preferences
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Cocktall preferences
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Cocktall preferences
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Cocktall preferences
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Cocktall preferences
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Cocktall preferences

Upper bound on the number of distinct mixtures
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Cocktall preferences

Upper bound on the number of distinct mixtures

blackcurrant syrup

Bayesian |-optimal design

261 different mixtures
l-opt = 2.72
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Cocktall preferences

Upper bound on the number of distinct mixtures
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Fruit flies’ color preferences
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Fruit flies’ color preferences
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More information

- Bayesian I-optimal designs for choice experiments with mixtures by Mario Becerra
and Peter Goos. Chemometrics and Intelligent Laboratory Systems 217 (2021):
104395. DOI: 10.1016/j.chemolab.2021.104395

- Bayesian D- and l-optimal designs for choice experiments involving mixtures and
process variables by Mario Becerra and Peter Goos. To appear in Food Quality
and Preference. DOI: 10.1016/j.foodqual.2023.104928

- R package with our algorithms (https://github.com/mariobecerra/opdesmixr)

- Mario Becerra’'s website (with links to papers, R package, and code):
mariobecerra.qgithub.io/



https://github.com/mariobecerra/opdesmixr
http://mariobecerra.github.io/

Thank you



Cocktall preferences
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Extra: Cocktail preferences
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Extra: Optimal design criteria

- D-optimal designs: low-variance estimators
- l-optimal designs: low-variance predictions

- Information matrix of multinomial logit model: 1(x,B) = ES:XZ(PS —p.ps )X
- With s=1

P, = diag(p,)

p, =(pravisprs)

XZ — [f(f”jS)]je_{l_ ..... J}

X = [Xy,.., X3

i 5 (£ (54)8]

> i1 exp [ (xs) ]




Extra: Model for choice data concerning mixtures

- The attributes of the alternatives in a choice experiment are the ingredients
of a mixture

- Vector z;; contains the q ingredient proportions and that f(x;s) represents
the model expansion of these proportions
Most natural thing to do

UJS — Z,Bzxzjs =+ Z Z ,szxZJkajs L L L ﬂzklwzgsmkgsmlgs + €js

t=1 k=i+1 t=1 k=i+1 l=k+1
Rewrlte Tgjs aS 1 — T1js — .. — Tq—1,5s

UJS = .f (wgs)la Z,Bz Lijs -+ Z Z ,szmzjsxkgs T Z Z Z ,szlxzjswkgsxl_ys -+ €js

=1 k=1+1 =1 k=i+1 l=k+1
- With
T
.f(:cys) — (xljsa L2jsy+e+3yLg—1,jsyL1jsT2jsy+++3yLq—1,jsLqjss L1jsL2jsTL3jsy - - ,mq—z,jsxq—l,jsmqjs)
Bi =Bi—Bq forie{l,..q—1} .
* * *
Tjs = (wlgs,mng, .'qus)T B — (131,182, "'7:Bq—1,ﬂl,2, '“9:Bq—1,q’181237 "°7ﬂq—2,q—1:Q)



