Bayesian D- and I-optimal designs for choice experiments involving mixtures and process variables

Mario Becerra with Peter Goos

July 10th, 2023 Model-Oriented Data Analysis and Optimum Design Southampton, England

Outline

- 1. Choice modeling and choice experiments
- 2. Mixture experiments
- 3. Combining choice models and mixture models
- 4. Optimality criteria for choice experiments
- 5. Examples

Choice modeling and choice experiments

Quantify consumer preferences

- Quantify consumer preferences
- Preference data is collected

- Quantify consumer preferences
- Preference data is collected
- Respondents are presented sets of alternatives (choice sets) and asked to choose

- Quantify consumer preferences
- Preference data is collected
- Respondents are presented sets of alternatives (choice sets) and asked to choose
 - Example: choosing to buy product A, B or C

- Quantify consumer preferences
- Preference data is collected
- Respondents are presented sets of alternatives (choice sets) and asked to choose
 Example: choosing to buy product A, B or C
- Latent utility function \rightarrow probability of making each decision

Mixture experiments

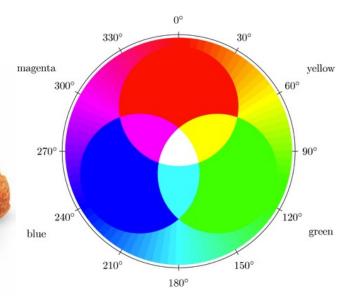
• Many products and services can be described as mixtures of ingredients

- Many products and services can be described as mixtures of ingredients
- Examples:
 - \circ ingredients of bread

- Many products and services can be described as mixtures of ingredients
- Examples:
 - o ingredients of bread
 - \circ ingredients used to make a cocktail

- Many products and services can be described as mixtures of ingredients
- Examples:
 - o ingredients of bread
 - \circ ingredients used to make a cocktail
 - \circ types of fish used to make a fish patty

- Many products and services can be described as mixtures of ingredients
- Examples:
 - ingredients of bread
 - \circ $\;$ ingredients used to make a cocktail
 - \circ types of fish used to make a fish patty
 - \circ $\,$ primary colors to make new colors



red

cyan

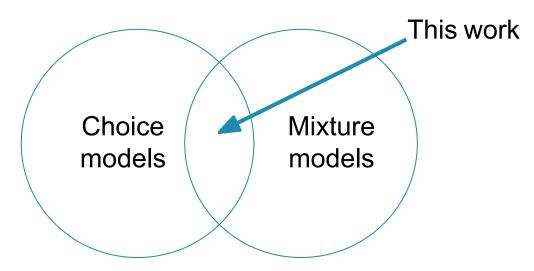
 In mixture experiments, products are expressed as combinations of proportions of ingredients

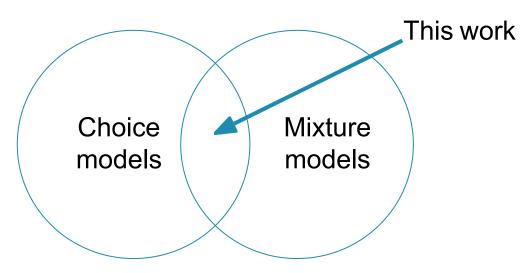
- In mixture experiments, products are expressed as combinations of proportions of ingredients
- The researchers' interest is generally in one or more characteristics of the mixture

- In mixture experiments, products are expressed as combinations of proportions of ingredients
- The researchers' interest is generally in one or more characteristics of the mixture
- In this work, the characteristic of interest is the **preference** of respondents

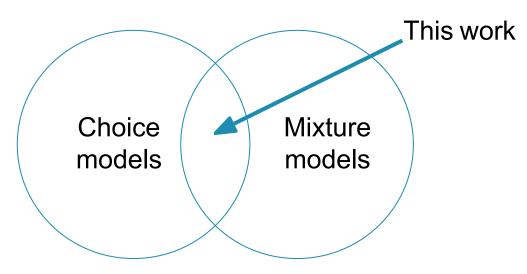
- In mixture experiments, products are expressed as combinations of proportions of ingredients
- The researchers' interest is generally in one or more characteristics of the mixture
- In this work, the characteristic of interest is the **preference** of respondents
- Choice experiments are ideal to collect data for quantifying and modeling preferences for mixtures

Combining choice models and mixture models

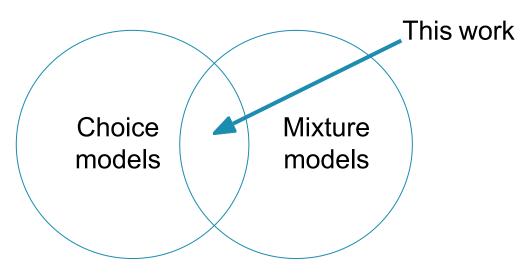




• First example by Courcoux and Séménou (1997), preferences for cocktails



- First example by Courcoux and Séménou (1997), preferences for cocktails
 - mango juice
 - lemon juice 🧹
 - blackcurrant syrup 🚙



- First example by Courcoux and Séménou (1997), preferences for cocktails
 - mango juice
 - lemon juice 🧉
 - blackcurrant syrup
- 60 people, each making 8 pairwise comparisons

• Experiments are expensive, cumbersome and time-consuming

- Experiments are expensive, cumbersome and time-consuming
- Efficient experimental designs \rightarrow reliable information

- Experiments are expensive, cumbersome and time-consuming
- Efficient experimental designs \rightarrow reliable information
- Optimal design of experiments: the branch of statistics that deals with the construction of efficient experimental designs

Optimality criteria for choice experiments

• **D-optimal** experimental designs \rightarrow low-variance estimators

- **D-optimal** experimental designs \rightarrow low-variance estimators
- We want to have a mixture that maximizes consumer preference

- **D-optimal** experimental designs \rightarrow low-variance estimators
- We want to have a mixture that maximizes consumer preference
- Precise predictions are crucial

- **D-optimal** experimental designs \rightarrow low-variance estimators
- We want to have a mixture that maximizes consumer preference
- Precise predictions are crucial
- **I-optimal** experimental designs \rightarrow low-variance prediction

Models for data from mixture experiments

Models for data from mixture experiments

 Mixture models assume two or more ingredients and a response variable that depends only on the relative proportions of the ingredients in the mixture

- Mixture models assume two or more ingredients and a response variable that depends only on the relative proportions of the ingredients in the mixture
- Each mixture is described as a combination of *q* ingredient proportions (0 to 1)

- Mixture models assume two or more ingredients and a response variable that depends only on the relative proportions of the ingredients in the mixture
- Each mixture is described as a combination of *q* ingredient proportions (0 to 1)
- Constraint: proportions sum up to one

- Mixture models assume two or more ingredients and a response variable that depends only on the relative proportions of the ingredients in the mixture
- Each mixture is described as a combination of *q* ingredient proportions (0 to 1)
- Constraint: proportions sum up to one \rightarrow perfect collinearity

- Mixture models assume two or more ingredients and a response variable that depends only on the relative proportions of the ingredients in the mixture
- Each mixture is described as a combination of q ingredient proportions (0 to 1)
- Constraint: proportions sum up to one \rightarrow perfect collinearity
- Special-cubic Scheffé model:

$$Y = \sum_{i=1}^{q} \beta_i x_i + \sum_{i=1}^{q-1} \sum_{j=i+1}^{q} \beta_{ij} x_i x_j + \sum_{i=1}^{q-2} \sum_{j=i+1}^{q-1} \sum_{k=j+1}^{q} \beta_{ijk} x_i x_j x_k + \varepsilon$$

• The result of a mixture may depend on other characteristics

- The result of a mixture may depend on other characteristics
- Additional variables → process variables

- The result of a mixture may depend on other characteristics
- Additional variables → process variables
- Second-order Scheffé model

- The result of a mixture may depend on other characteristics
- Additional variables → process variables
- Second-order Scheffé model

$$Y = \sum_{k=1}^{q} \gamma_k^0 x_k + \sum_{k=1}^{q-1} \sum_{l=k+1}^{q} \gamma_{kl}^0 x_k x_l + \sum_{i=1}^{r} \sum_{k=1}^{q} \gamma_k^i x_k z_i + \sum_{i=1}^{r-1} \sum_{j=i+1}^{r} \alpha_{ij} z_i z_j + \sum_{i=1}^{r} \alpha_i z_i^2 + \varepsilon$$

• A respondent faces S choice sets involving J alternatives each

- A respondent faces S choice sets involving J alternatives each
- Respondent chooses the alternative that has the highest perceived utility

- A respondent faces S choice sets involving J alternatives each
- Respondent chooses the alternative that has the highest perceived utility
- The probability that a respondent chooses alternative *j* ∈ {1, ..., J} in choice set *s* is

$$p_{js} = rac{\exp\left[oldsymbol{f}^T(oldsymbol{x}_{js})oldsymbol{eta}
ight]}{\sum_{t=1}^J \exp\left[oldsymbol{f}^T(oldsymbol{x}_{ts})oldsymbol{eta}
ight]}$$

Model for choice data concerning mixtures

• We assume vector x_{js} contains the q ingredient proportions and r process variables

Model for choice data concerning mixtures

- We assume vector \boldsymbol{x}_{js} contains the q ingredient proportions and r process variables
- Perceived utility modeled as

$$u_{js} = \mathbf{f}(\mathbf{x}_{js})^{T} \boldsymbol{\beta}$$

= $\sum_{i=1}^{q-1} \gamma_{i}^{0*} x_{ijs} + \sum_{i=1}^{q-1} \sum_{k=i+1}^{q} \gamma_{ik}^{0} x_{ijs} x_{kjs} + \sum_{i=1}^{r} \sum_{k=1}^{q} \gamma_{k}^{i} x_{kjs} z_{ijs} + \sum_{i=1}^{r} \sum_{k=i+1}^{r} \alpha_{ik} z_{ijs} z_{kjs} + \sum_{i=1}^{r} \alpha_{i} z_{ijs}^{2}$

- D-optimality criterion
 - $\mathcal{D} = \det \left(oldsymbol{I}^{-1}(oldsymbol{X},oldsymbol{eta})
 ight)$

D-optimality criterion

$$\mathcal{D} = \det \left(\boldsymbol{I}^{-1}(\boldsymbol{X}, \boldsymbol{eta})
ight)$$
 _____ prior distribution $\pi(\boldsymbol{eta})$

- D-optimality criterion
 - $\mathcal{D} = \det \left(\boldsymbol{I}^{-1}(\boldsymbol{X}, \boldsymbol{eta})
 ight)$
- Bayesian D-optimality criterion $\mathcal{D}_B = \int_{\mathbb{R}^m} \det \left(\boldsymbol{I}^{-1}(\boldsymbol{X}, \boldsymbol{\beta}) \right) \pi(\boldsymbol{\beta}) d\boldsymbol{\beta}$

- D-optimality criterion
 - $\mathcal{D} = \det \left(\boldsymbol{I}^{-1}(\boldsymbol{X}, \boldsymbol{eta})
 ight)$
- Bayesian D-optimality criterion $\mathcal{D}_B = \int_{\mathbb{R}^m} \det \left(\boldsymbol{I}^{-1}(\boldsymbol{X}, \boldsymbol{\beta}) \right) \pi(\boldsymbol{\beta}) d\boldsymbol{\beta}$
- Numerical approximation to Bayesian D-optimality criterion

$$\mathcal{D}_B \approx \frac{1}{R} \sum_{i=1}^R \det \left(\boldsymbol{I}^{-1}(\boldsymbol{X}, \boldsymbol{\beta}^{(i)}) \right)$$

KU LEUVEN

I-optimality criterion

$$\mathcal{I} = \int_{\chi} oldsymbol{f}^T(oldsymbol{x}_{js})oldsymbol{I}^{-1}(oldsymbol{X},oldsymbol{eta})oldsymbol{f}(oldsymbol{x}_{js})doldsymbol{x}_{js}$$

I-optimality criterion

$$egin{aligned} \mathcal{I} &= \int_{\chi} oldsymbol{f}^T(oldsymbol{x}_{js})oldsymbol{I}^{-1}(oldsymbol{X},oldsymbol{eta})oldsymbol{f}(oldsymbol{x}_{js})doldsymbol{x}_{js} \ &= ext{tr}\left[oldsymbol{I}^{-1}(oldsymbol{X},oldsymbol{eta})oldsymbol{W}_u
ight] \end{aligned}$$

$$oldsymbol{W}_u = \int_{\chi} oldsymbol{f}(oldsymbol{x}_{js}) oldsymbol{f}^T(oldsymbol{x}_{js}) doldsymbol{x}_{js}$$

KU LEUVEN

I-optimality criterion

$$egin{aligned} \mathcal{I} &= \int_{\chi} oldsymbol{f}^T(oldsymbol{x}_{js})oldsymbol{I}^{-1}(oldsymbol{X},oldsymbol{eta})oldsymbol{f}(oldsymbol{x}_{js})doldsymbol{x}_{js} \ &= \mathrm{tr}\left[oldsymbol{I}^{-1}(oldsymbol{X},oldsymbol{eta})oldsymbol{W}_u
ight] \end{aligned}$$

Bayesian I-optimality criterion

$$\mathcal{I}_B = \int_{\mathbb{R}^m} \operatorname{tr} \left[\boldsymbol{I}^{-1}(\boldsymbol{X}, \boldsymbol{eta}) \boldsymbol{W}_u \right] \pi(\boldsymbol{eta}) d\boldsymbol{eta}$$

$$oldsymbol{W}_u = \int_{\chi} oldsymbol{f}(oldsymbol{x}_{js}) oldsymbol{f}^T(oldsymbol{x}_{js}) doldsymbol{x}_{js}$$

I-optimality criterion

$$egin{aligned} \mathcal{I} &= \int_{\chi} oldsymbol{f}^T(oldsymbol{x}_{js})oldsymbol{I}^{-1}(oldsymbol{X},oldsymbol{eta})oldsymbol{f}(oldsymbol{x}_{js})doldsymbol{x}_{js} \ &= \mathrm{tr}\left[oldsymbol{I}^{-1}(oldsymbol{X},oldsymbol{eta})oldsymbol{W}_u
ight] \end{aligned}$$

Bayesian I-optimality criterion

$$\mathcal{I}_B = \int_{\mathbb{R}^m} \operatorname{tr} \left[\boldsymbol{I}^{-1}(\boldsymbol{X}, \boldsymbol{\beta}) \boldsymbol{W}_u \right] \pi(\boldsymbol{\beta}) d\boldsymbol{\beta}$$

Numerical approximation to Bayesian I-optimality criterion

$$\mathcal{I}_B \approx \frac{1}{R} \sum_{i=1}^{R} \operatorname{tr} \left[\boldsymbol{I}^{-1}(\boldsymbol{X}, \boldsymbol{\beta}^{(i)}) \boldsymbol{W}_u \right]$$

$$oldsymbol{W}_u = \int_{\chi} oldsymbol{f}(oldsymbol{x}_{js}) oldsymbol{f}^T(oldsymbol{x}_{js}) doldsymbol{x}_{js}$$

KU LEUVEN

13/19

Original experiment by Courcoux and Semenou

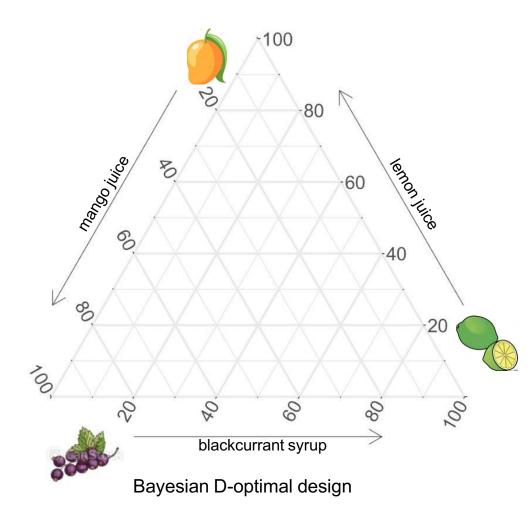
- Original experiment by Courcoux and Semenou
- September 2019: students from KU Leuven replicated the experiment with 35 respondents

- Original experiment by Courcoux and Semenou
- September 2019: students from KU Leuven replicated the experiment with 35 respondents
- Each respondent tasted 4 choice sets of size 2

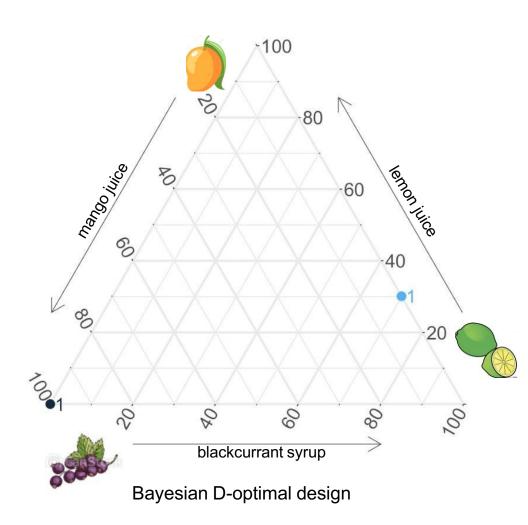
- Original experiment by Courcoux and Semenou
- September 2019: students from KU Leuven replicated the experiment with 35 respondents
- Each respondent tasted 4 choice sets of size 2
- Simulated responses for temperature (process variable)

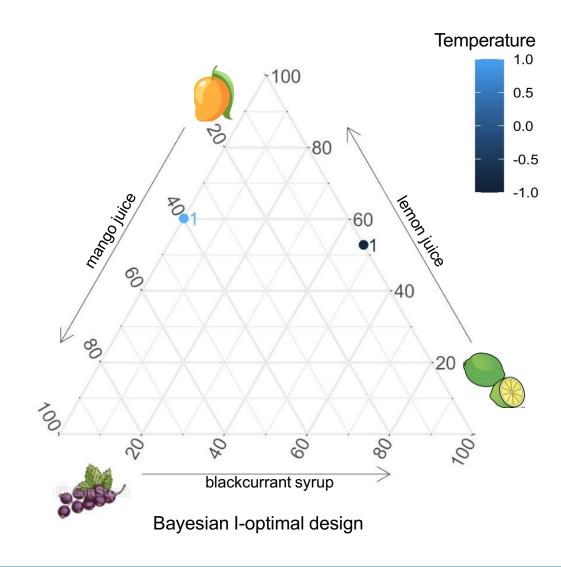
- Original experiment by Courcoux and Semenou
- September 2019: students from KU Leuven replicated the experiment with 35 respondents
- Each respondent tasted 4 choice sets of size 2
- Simulated responses for temperature (process variable) $\rightarrow \beta$ parameter vector

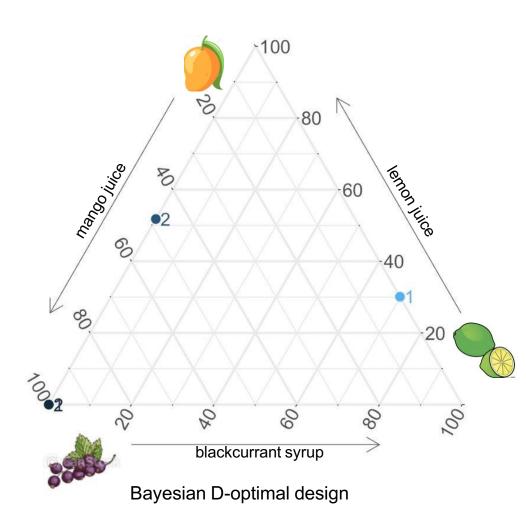
- Original experiment by Courcoux and Semenou
- September 2019: students from KU Leuven replicated the experiment with 35 respondents
- Each respondent tasted 4 choice sets of size 2
- Simulated responses for temperature (process variable) $\rightarrow \beta$ parameter vector
- β used as prior distribution in a second-order Scheffé model and MNL model for Bayesian D- and I-optimal designs

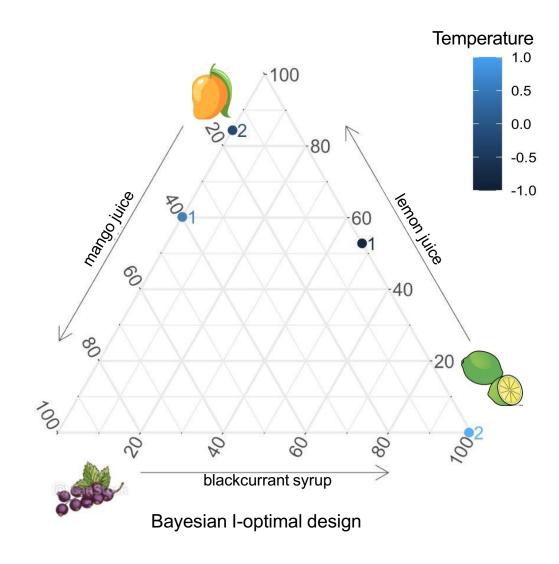


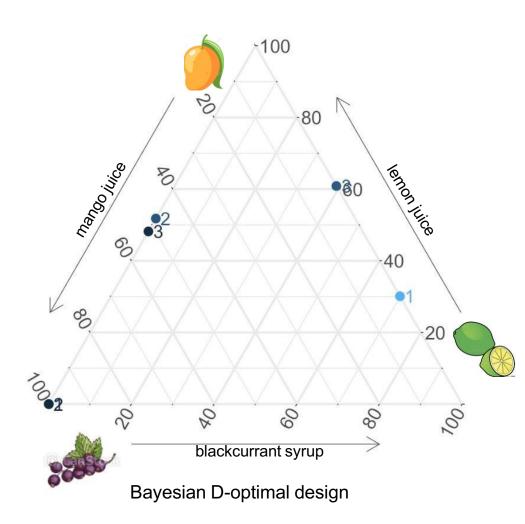


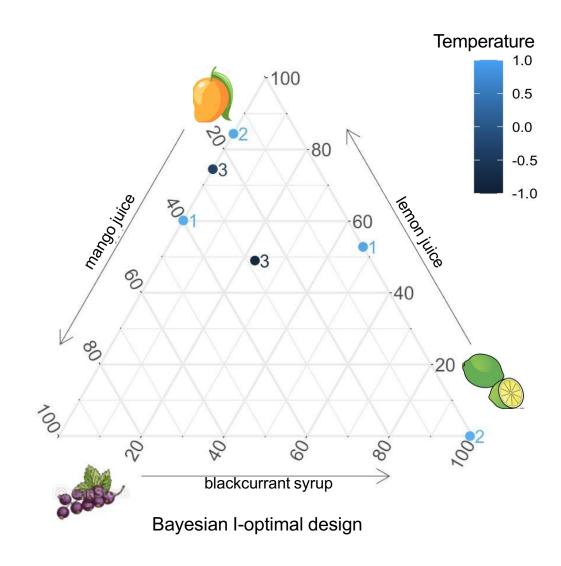


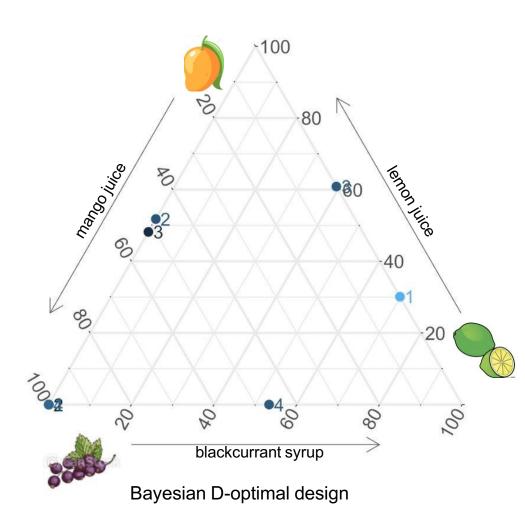


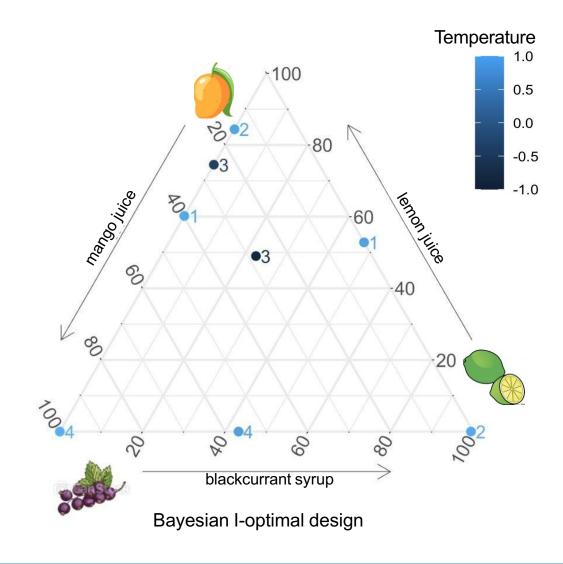


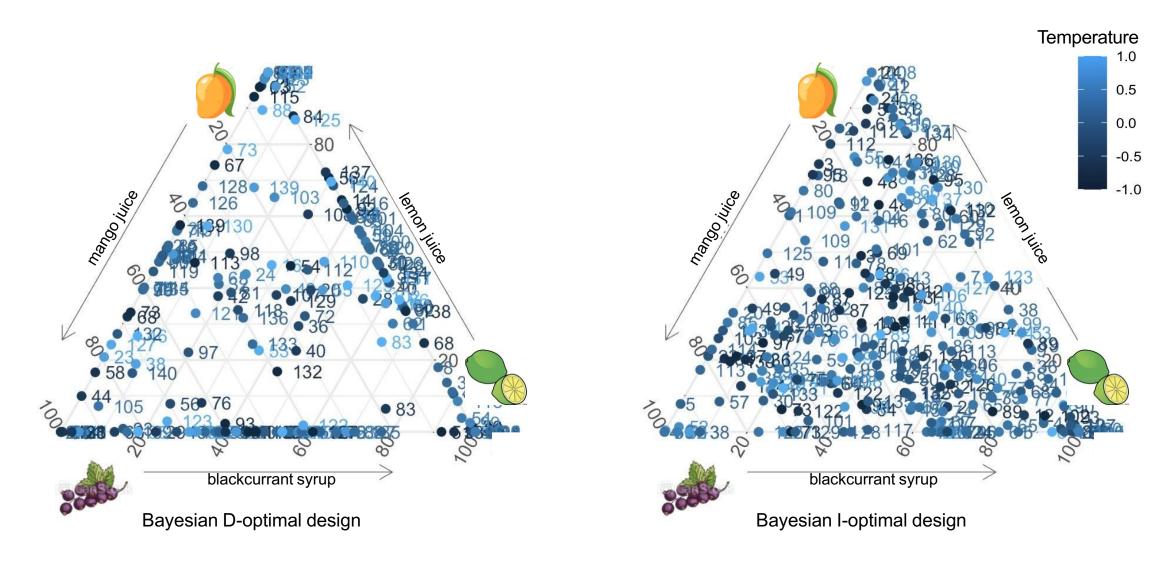


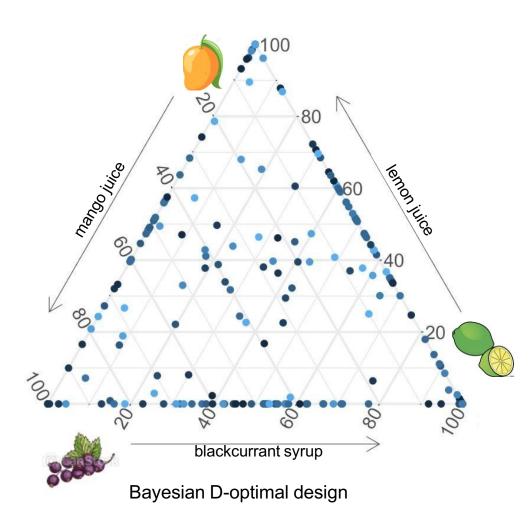


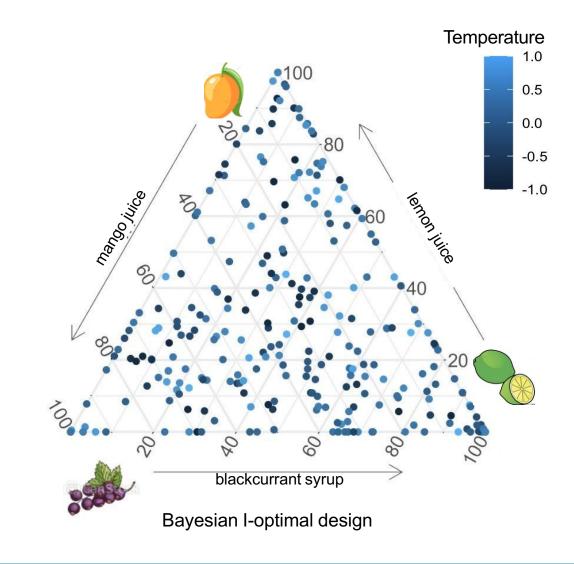


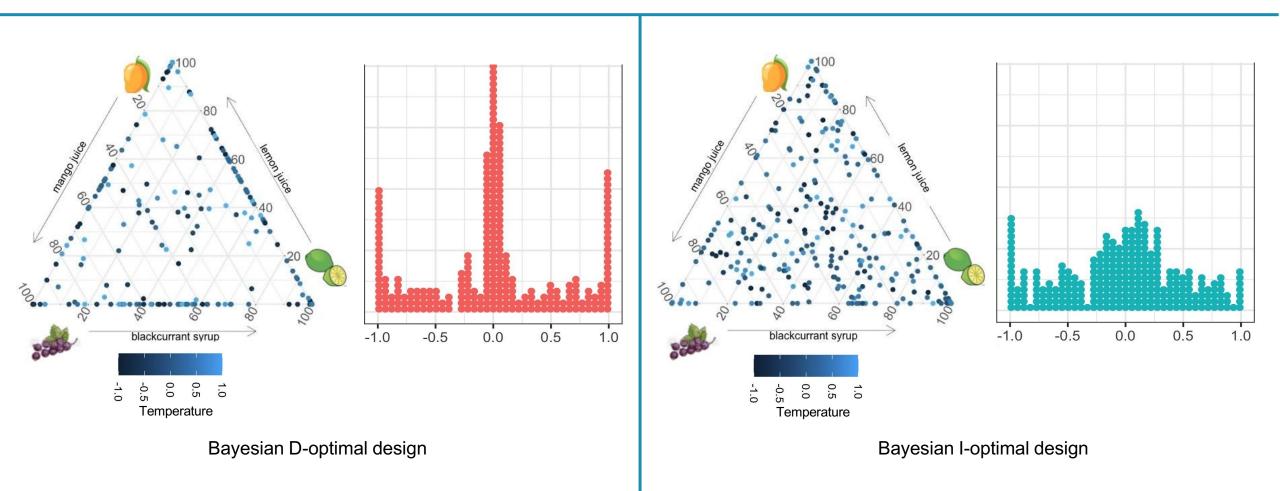








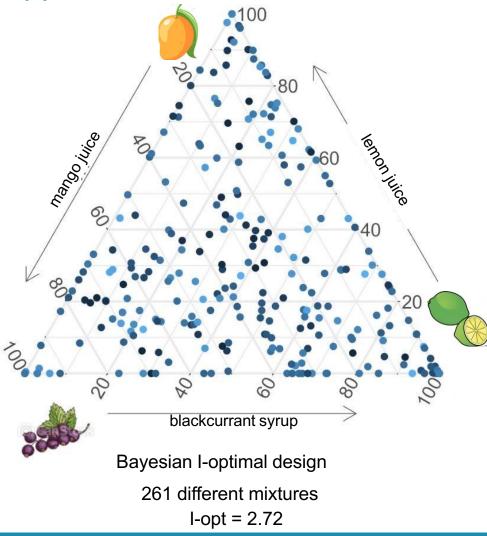




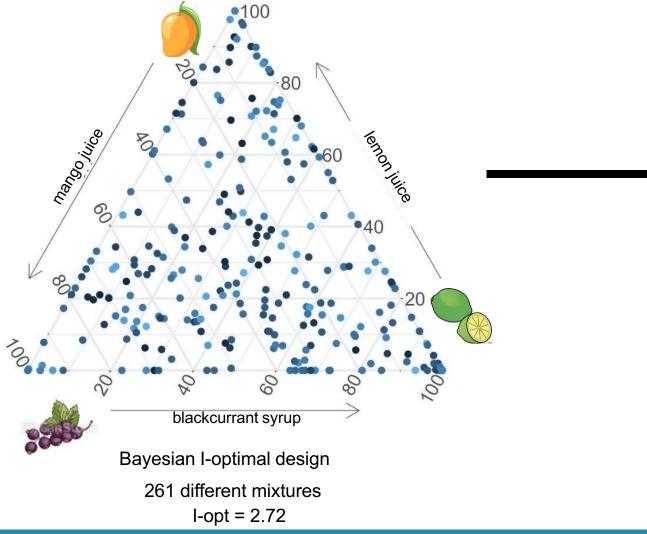
Cocktail preferences Upper bound on the number of distinct mixtures

KU LEUVEN

Cocktail preferences Upper bound on the number of distinct mixtures



Cocktail preferences Upper bound on the number of distinct mixtures

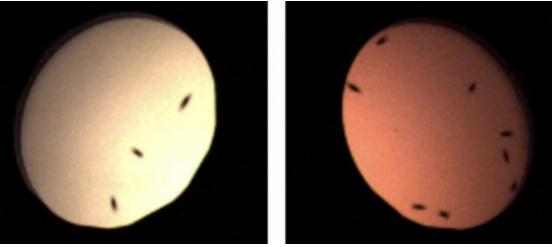




Fruit flies' color preferences

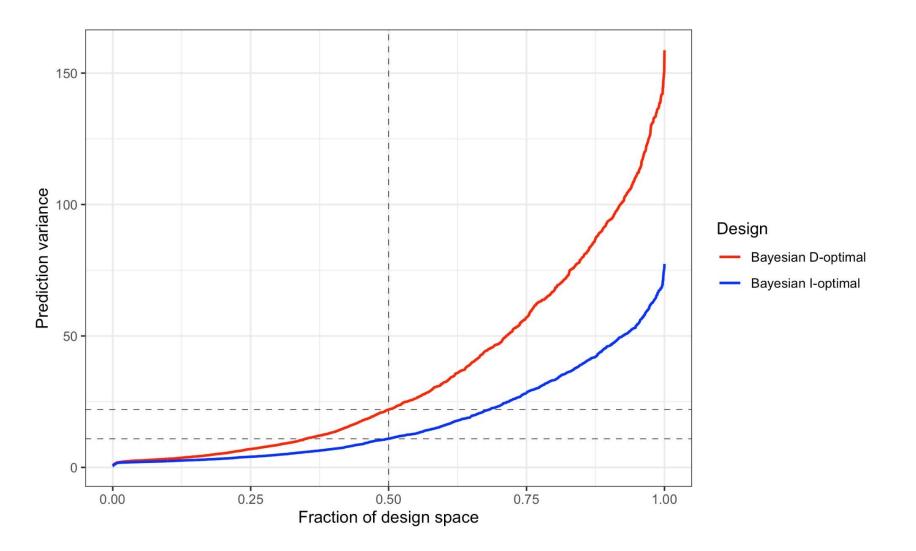
Fruit flies' color preferences

Fruit flies' color preferences

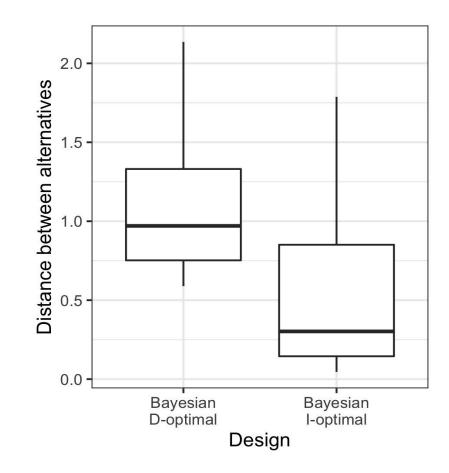


More information

- Bayesian I-optimal designs for choice experiments with mixtures by Mario Becerra and Peter Goos. Chemometrics and Intelligent Laboratory Systems 217 (2021): 104395. DOI: 10.1016/j.chemolab.2021.104395
- Bayesian D- and I-optimal designs for choice experiments involving mixtures and process variables by Mario Becerra and Peter Goos. To appear in Food Quality and Preference. DOI: 10.1016/j.foodqual.2023.104928
- R package with our algorithms (<u>https://github.com/mariobecerra/opdesmixr</u>)
- Mario Becerra's website (with links to papers, R package, and code): <u>mariobecerra.github.io/</u>



Extra: Cocktail preferences



KU LEUVEN

Extra: Optimal design criteria

- D-optimal designs: low-variance estimators
- I-optimal designs: low-variance predictions
- Information matrix of multinomial logit model: $I(X,\beta) = \sum X_s^T (P_s p_s p_s^T) X_s$
- With
 - $egin{aligned} m{P}_s &= ext{diag}(m{p}_s) \ m{p}_s &= (p_{1s},...,p_{Js})^T \ m{X}_s^T &= [m{f}(m{x}_{js})]_{j\in\{1,...,J\}} \ m{X} &= [m{X}_1,...,m{X}_S] \ m{y}_{js} &= rac{ ext{exp}\left[m{f}^T(m{x}_{js})m{eta}
 ight]}{\sum_{t=1}^J ext{exp}\left[m{f}^T(m{x}_{ts})m{eta}
 ight]} \end{aligned}$

Extra: Model for choice data concerning mixtures

- The attributes of the alternatives in a choice experiment are the ingredients of a mixture
- Vector x_{js} contains the q ingredient proportions and that $f(x_{js})$ represents the model expansion of these proportions
- Most natural thing to do:

$$U_{js} = \sum_{i=1}^{q} \beta_{i} x_{ijs} + \sum_{i=1}^{q-1} \sum_{k=i+1}^{q} \beta_{ik} x_{ijs} x_{kjs} + \sum_{i=1}^{q-2} \sum_{k=i+1}^{q-1} \sum_{l=k+1}^{q} \beta_{ikl} x_{ijs} x_{kjs} x_{ljs} + \varepsilon_{js}$$

• Rewrite
$$x_{qjs}$$
 as $1 - x_{1js} - \dots - x_{q-1,js}$
 $U_{js} = \mathbf{f}^T(\mathbf{x}_{js})\mathbf{\beta} = \sum_{i=1}^{q-1} \beta_i^* x_{ijs} + \sum_{i=1}^{q-1} \sum_{k=i+1}^q \beta_{ik} x_{ijs} x_{kjs} + \sum_{i=1}^{q-2} \sum_{k=i+1}^{q-1} \sum_{l=k+1}^q \beta_{ikl} x_{ijs} x_{kjs} x_{ljs} + \varepsilon_{js}$

• With

$$\begin{aligned} \boldsymbol{f}(\boldsymbol{x}_{js}) &= (x_{1js}, x_{2js}, \dots, x_{q-1, js}, x_{1js} x_{2js}, \dots, x_{q-1, js} x_{qjs}, x_{1js} x_{2js} x_{3js}, \dots, x_{q-2, js} x_{q-1, js} x_{qjs})^T \\ \beta_i^* &= \beta_i - \beta_q \text{ for } i \in \{1, \dots, q-1\} \\ \boldsymbol{x}_{js} &= (x_{1js}, x_{2js}, \dots, x_{qjs})^T \end{aligned} \qquad \boldsymbol{\beta} = \left(\beta_1^*, \beta_2^*, \dots, \beta_{q-1}^*, \beta_{1,2}, \dots, \beta_{q-1,q}, \beta_{123}, \dots, \beta_{q-2,q-1,q}\right)^T$$