
Motivation Proposed Subsampling Algorithm Simulation Study Practical Aspects

Efficient subsampling for exponential family models

Dr. Subhadra Dasgupta

Joint work with Prof. Dr. Holger Dette

(Ruhr-Universität Bochum)

July 2023



Motivation Proposed Subsampling Algorithm Simulation Study Practical Aspects

Outline

Motivation

Proposed Subsampling Algorithm

Simulation Study

Practical Aspects



Motivation Proposed Subsampling Algorithm Simulation Study Practical Aspects

In the age of big data, technical advances have enabled exponential growth in data
collection.

D = {(xxx i , yi ) : i = 1, . . . , n}
xxx i = (xi1, xi2, . . . , xip)

Examples

• Sensor response time data- n ≈ 4 ∗ 106 and p = 14

• Flight arrival and departure data- n ≈ 108 and p = 29

• Cross-Continental square kilometer array data generated by an Astronomical
telescope- 700 TB/sec

Techniques- To deal with the data size

1. Divide and conquer- Takes advantage of parallel computing technologies

2. Dimensionality reduction- when n << p

3. Subsampling- when n >> p
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Subsampling

Sample: D = {(xxx i , yi ) : i = 1, . . . , n} and

Subsample Dk = {(xxxsi , ysi ) : i = 1, . . . , k} such that Dk ⊂ D.

βββ = (β0, β1, . . . , βp) is the parameter corresponding to a model.

• β̂ββ denote the estimator based on the full sample D
• β̂ββDk

denote the estimator based on the subsample Dk

Aims

1. β̂ββDk
is very close to β̂ββ

2. The subsampling algorithm should be computationally cheaper
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Existing Subsampling Techniques

• Generalized linear models- [Ai et al., 2021](non-deterministic, based on
L-optimality and A-optimality), [Deldossi and Tommasi, 2022] (deterministic and
design based on approximate optimal design)

• Logistic regression [Wang et al., 2018], [Cheng et al., 2020]

• Linear regression [Wang et al., 2019],[Ma et al., 2015],[Ren and Zhao, 2021],
[Wang et al., 2021]

Our Goal
To find a subsampling algorithm that addresses

• Applicability to a wide class of models

• Provides good estimation accuracy

• Reasonable time complexity
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Proposed Subsampling Algorithm

D = {(xxx i , yi ) : i = 1, . . . , n} is the sample such that (xxx , y) ∈ X × Y ⊂ Rp × R.

Model

f (y |xxx ,βββ) = h(y) exp{η⊤(xxx ,βββ)T (y)− A(xxx ,βββ)},

βββ = (β0, β1, . . . , βp)⊤ ∈ Θ ⊂ Rp+1, h(y) is assumed to be a positive measurable
function, η : X ×Θ → Rl , A : X ×Θ → R, and T denote a l-dimensional statistic.

Working principle- Proposed Algorithm

• Subsample is close to the approximate optimal design corresponding to the
underlying model



Motivation Proposed Subsampling Algorithm Simulation Study Practical Aspects

Proposed Subsampling Algorithm

D = {(xxx i , yi ) : i = 1, . . . , n} is the sample such that (xxx , y) ∈ X × Y ⊂ Rp × R.

Model

f (y |xxx ,βββ) = h(y) exp{η⊤(xxx ,βββ)T (y)− A(xxx ,βββ)},

βββ = (β0, β1, . . . , βp)⊤ ∈ Θ ⊂ Rp+1, h(y) is assumed to be a positive measurable
function, η : X ×Θ → Rl , A : X ×Θ → R, and T denote a l-dimensional statistic.

Working principle- Proposed Algorithm

• Subsample is close to the approximate optimal design corresponding to the
underlying model



Motivation Proposed Subsampling Algorithm Simulation Study Practical Aspects

Optimal Design Based Subsampling (ODBSS)

Aim
Accurate estimation of the maximum likelihood estimate of βββ using a subsample of D

β̂ββ = (β̂0, β̂1, . . . , β̂p)
⊤ ∈ Rp+1

Fisher information matrix at the point xxx ∈ X

I(βββ,xxx) = E
[{ ∂

∂βββ
log f (y |xxx ,βββ)

} { ∂

∂βββ
log f (y |xxx ,βββ)

}⊤]
An approximate design

ξ(X ,βββ) =

{
xxx1

w1

xxx2

w2
. . .

xxxd

wd

}
,

where xxx1, . . . ,xxxd ∈ X and w1 + w2 + . . .+ wd = 1.

M(ξ,βββ) :=
d∑

i=1

wiI(xxx i ,βββ),

Covariance matrix of the maximum likelihood estimator
√
nβ̂ββ converges to the matrix

M−1(ξ,βββ)
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Optimal Design Based Subsampling (ODBSS)

An approximate optimal design

ξ∗(X ,βββ) =

{
xxx∗1
w∗
1

xxx∗2
w∗
2

. . .
xxx∗d
w∗
d

}
,

where xxx∗1 , . . . ,xxx
∗
d ∈ X and w∗

1 + w∗
2 + . . .+ w∗

d = 1 is obtained by maximizing
Φ(MMM(ξ)) for xxx∗i and w∗

i , where Φ(·) concave function.

Example, for D-optimality Φ(·) = log(det(M(ξ,βββ))).
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Optimal Design Based Subsampling (ODBSS)

Input: The sample D of size n
Output: The subsample Dk a of size k

Step 1: Initial sampling

(1.1) Take a uniform subsample of size k0 denoted by Dk0

(1.2) Find an estimate of the design space Xk0 based on Dk0

(1.3) Calculate an initial parameter estimate β̂ββDk0
based on Dk0

Step 2: Optimal design determination

(2.1) Find a (locally) approximate optimal design ξ∗(Xk0 , β̂ββDk0
) =

{
xxx∗1
w∗
1

xxx∗2
w∗
2
. . .

xxx∗d
w∗
d

}

Step 3: Optimal design based subsampling

(3.1) Determine the remaining subsample Dk1 (k1 = k − k0), such that, ⌊w∗
i k1⌋

observations are “close” to the support points xxx∗i of the optimal design

ξ∗(Xk0 , β̂ββDk0
) (i = 1, . . . , d).

(3.2) The final subsample Dk = Dk0 ∪ Dk1

The points xxx∗i ∈ X but might not be a part of the original sample
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Optimal Design Based Subsampling (ODBSS)
Logistic regression with two covariates and βββ = (.1, .5, .5)

(xxx1,xxx2) ∼ N (0,ΣΣΣ), where ΣΣΣ =

(
1 .5
.5 1

)

−4 −2 0 2 4

−
4

−
2

0
2

4

x1

x 2

(a) full data (n = 50000)

−4 −2 0 2 4

−
4

−
2

0
2

4

x1

x 2

Initial subsample points

(b) Dk0
with k0 = 1000

−4 −2 0 2 4

−
4

−
2

0
2

4

x1

x 2

Estimated design space points
Optimal design points

(c) Xk0
and ξ∗(Xk0

, β̂ββDk0
)

−4 −2 0 2 4

−
4

−
2

0
2

4

x1

x 2

Original data points
Optimal design points
Final subsample points

(d) Dk (k = 5000)



Motivation Proposed Subsampling Algorithm Simulation Study Practical Aspects

Optimal Design Based Subsampling (ODBSS)
Logistic regression with two covariates and βββ = (.1, .5, .5)

(xxx1,xxx2) ∼ N (0,ΣΣΣ), where ΣΣΣ =

(
1 .5
.5 1

)

−4 −2 0 2 4

−
4

−
2

0
2

4

x1

x 2

(a) full data (n = 50000)

−4 −2 0 2 4

−
4

−
2

0
2

4

x1

x 2

Initial subsample points

(b) Dk0
with k0 = 1000

−4 −2 0 2 4

−
4

−
2

0
2

4

x1

x 2

Estimated design space points
Optimal design points

(c) Xk0
and ξ∗(Xk0

, β̂ββDk0
)

−4 −2 0 2 4

−
4

−
2

0
2

4

x1

x 2

Original data points
Optimal design points
Final subsample points

(d) Dk (k = 5000)



Motivation Proposed Subsampling Algorithm Simulation Study Practical Aspects

Optimal Design Based Subsampling (ODBSS)
Logistic regression with two covariates and βββ = (.1, .5, .5)

(xxx1,xxx2) ∼ N (0,ΣΣΣ), where ΣΣΣ =

(
1 .5
.5 1

)

−4 −2 0 2 4

−
4

−
2

0
2

4

x1

x 2

(a) full data (n = 50000)

−4 −2 0 2 4

−
4

−
2

0
2

4

x1

x 2

Initial subsample points

(b) Dk0
with k0 = 1000

−4 −2 0 2 4

−
4

−
2

0
2

4

x1

x 2

Estimated design space points
Optimal design points

(c) Xk0
and ξ∗(Xk0

, β̂ββDk0
)

−4 −2 0 2 4

−
4

−
2

0
2

4

x1

x 2

Original data points
Optimal design points
Final subsample points

(d) Dk (k = 5000)



Motivation Proposed Subsampling Algorithm Simulation Study Practical Aspects

Optimal Design Based Subsampling (ODBSS)
Logistic regression with two covariates and βββ = (.1, .5, .5)

(xxx1,xxx2) ∼ N (0,ΣΣΣ), where ΣΣΣ =

(
1 .5
.5 1

)

−4 −2 0 2 4

−
4

−
2

0
2

4

x1

x 2

(a) full data (n = 50000)

−4 −2 0 2 4

−
4

−
2

0
2

4

x1

x 2

Initial subsample points

(b) Dk0
with k0 = 1000

−4 −2 0 2 4

−
4

−
2

0
2

4

x1

x 2

Estimated design space points
Optimal design points

(c) Xk0
and ξ∗(Xk0

, β̂ββDk0
)

−4 −2 0 2 4

−
4

−
2

0
2

4

x1

x 2

Original data points
Optimal design points
Final subsample points

(d) Dk (k = 5000)



Motivation Proposed Subsampling Algorithm Simulation Study Practical Aspects

Optimal Design Based Subsampling (ODBSS)- Details

Step 1: Initial sampling

(1.1) Take a uniform subsample of size k0 denoted by Dk0

(1.2) Find an estimate of the design space Xk0 based on Dk0
Reasons

• In real-world problems the design space is not known
• The optimal design depends upon the design space
• This also ensures reduced time complexity

Technique
• Done using density-based clustering [Ester et al., 1996]
• Used the DBSCAN package in R − software [Hahsler et al., 2022]

(1.3) Calculate an initial parameter estimate β̂ββDk0
based on Dk0

Reasons
• In non-linear models the optimal design depends on the parameter
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Optimal Design Based Subsampling (ODBSS)- Details

Step 2: Optimal design determination

(2.1) Find a (locally) approximate optimal design ξ∗(Xk0 , β̂ββDk0
) =

{
xxx∗1
w∗
1

xxx∗2
w∗
2
. . .

xxx∗d
w∗
d

}
Technique

• Approximate optimal designs are determined numerically using OptimalDesign in
R − software [Harman and Lenka, 2019] for our simulation studies
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Optimal Design Based Subsampling (ODBSS)- Details

Step 3: Optimal design based subsampling

(3.1) Determine the remaining subsample Dk1 (k1 = k − k0), such that, ⌊w∗
i k1⌋

observations are “close” to the support points xxx∗i of the optimal design

ξ∗(Xk0 , β̂ββDk0
) (i = 1, . . . , d).

(3.2) The final subsample Dk = Dk0 ∪ Dk1

Distance between points

• Frobenius distance
dF (xxx ,xxx

′) := ∥I(xxx , β)− I(xxx ′, β)∥F :=

tr
{(

I(xxx , β)− I(xxx ′, β)
)⊤ (

I(xxx , β)− I(xxx ′, β)
)}1/2

• Square root distance
ds(xxx ,xxx ′) := ∥I(xxx , β)1/2 − I(xxx ′, β)1/2∥F

• Procrustes distance

dp(xxx ,xxx ′) := inf
KKK∈O(R(p+1)×(p+1))

{
∥I(xxx , β)− I(xxx ′, β)KKK∥F

}1/2
, where

O(R(p+1)×(p+1)) is set of orthogonal matrices
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Simulation study

• The subsampling algorithms are compared by the MSE = E
[
∥βββ − β̂ββDk

∥2
]
by performing 100 simulation runs

• Logistic regression model p = 7, no intercept, βββ = (0.5, 0.5, . . . , 0.5), and n=100000

• Covariates xxx = (x1, x2, . . . , x7) follows multivariate a centered normal distribution with covariance ΣΣΣ

(1) ΣΣΣ1 = (0.5|i−j|)i,j=1,...,7.

(2) ΣΣΣ2 = 2 eee1eee
⊤
1 + 1.8 eee2eee

⊤
2 + 1.6 eee3eee

⊤
3 + 1.4 eee4eee

⊤
4 + 1.2 eee5eee

⊤
5 + 0.1 ΣΣΣ1 where, eee1, eee2, eee3, eee4, and eee5 ∈ on

S6 ⊂ R7 are mutually orthogonal and chosen randomly in each simulation

(3) Similarly to (2) ΣΣΣ3 = 3 eee1eee
⊤
1 + 2 eee2eee

⊤
2 + 1 eee3eee

⊤
3 + 0.1 ΣΣΣ1

• In the simulation studies we consider approximate A-optimal designs
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Subsampling Matrix distances for Logistic regression

Distance between points- When information matrix is rank 1

When rank of I(xxx,βββ) is 1, then I(xxx,βββ) = Φ(xxx,βββ)Φ(xxx,βββ)⊤ where Φ(xxx,βββ) ∈ Rp+1.

• dF (xxx, xxx′) =
{
∥Φ(xxx,βββ)∥4 + ∥Φ(xxx′,βββ)∥4 − 2(Φ(xxx′,βββ)⊤Φ(xxx,βββ))2

}1/2

• ds (xxx, xxx
′) =

{
∥Φ(xxx,βββ)∥2 + ∥Φ(xxx′,βββ)∥2 − 2

(Φ(xxx′,βββ)⊤Φ(xxx,βββ))2

∥Φ(xxx,βββ)∥ ∥Φ(xxx′,βββ)∥

}1/2

• dp (xxx, xxx
′) = ∥Φ(xxx,βββ) − Φ(xxx′,βββ)∥ =

{
∥Φ(xxx,βββ)∥2 + ∥Φ(xxx′,βββ)∥2 − 2(Φ(xxx′,βββ)⊤Φ(xxx,βββ))

}1/2
,

where ∥ · ∥ is the Euclidean norm.
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Simulation study

• ODBSS based on the distances dF , ds , and dp are comparable

• Some more simulations indicated dF would be a better choice among the three
distances
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Simulation study- Comparison with existing algorithms
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Computational complexity of ODBSS

Time Components

(1) Area estimation: Complexity of DBSCAN algorithm with p-dimensional k0 points
is O(k2

0p)

(2) Calculation of optimal design over Xk0 : O((sp)3), where s = |Xk0 | (s is
controlled by the experimenter)

(3) Subsample allocation: O(dnp) +O(dn).
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Computational complexity of ODBSS

(2) Run-time for finding optimal design is low - O((sp)3)

• If area approximation is not done, then D serves as the approximation of the
design space.

• In the above case, the time complexity for finding optimal design is O((np)3)

• Simulation studies show that area approximation does not have any negative
impact on parameter estimation (performs well with respect to mVc, IBOSS)

• Area estimation reduced the time for the subsampling algorithm significantly

n

100000 200000 300000 400000

N (000,ΣΣΣ1) ODBSS 7.05 8.66 7.79 8.43
ODBSS-2 5.63 8.95 9.60 13.05

N (000,ΣΣΣ2) ODBSS 6.52 6.01 6.69 8.33
ODBSS-2 4.17 7.11 10.29 12.51

N (000,ΣΣΣ3) ODBSS 8.34 7.33 8.72 8.05
ODBSS-2 5.11 8.09 11.07 11.51

Table: Comparison of run times (in seconds) of ODBSS is with area estimation and ODBSS-2 is with and without area approximation
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Computational complexity of ODBSS

(3) Reduce run-time for subsample allocation- O(dnp) + O(dn)

• Number of support points d of the approximate optimal design is quite high
(although bounded by p(p+1)/2

• Efficiency of a design ξ:

eff(ξ,βββ) =
Φ(M(ξ,βββ))

Φ(M(ξ∗(βββ,X ),βββ)
∈ [0, 1]

• Use a design with reduced efficiency
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Conclusion and Future Directions

Summary

• Provides a universal subsampling framework for any model

• Propose ways to minimize the run-time of the subsampling algorithm without
compromising the quality of estimation

• Simulation studies show that ODBSS outperforms the existing algorithms for
linear and logistic regression

Future Directions

• Need to investigate if there is a theoretical justification as to why the proposed
approach performs better

• To investigate the statistical properties of the ODBSS estimators (with various
matrix distances)

• The optimal design determination is computationally expensive and we need to
find if this could be reduced
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matrix distances)

• The optimal design determination is computationally expensive and we need to
find if this could be reduced
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ODBSS- Area estimation step in details

Logistic regression with two covariates and βββ = (.1, .5, .5)
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ODBSS- Optimal design estimation step in details
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