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1. Motivation of the work

Nowadays, advances in technology have brought the ability to
collect, transfer and store large datasets.

Data reduction may help in reducing not only the computational
burden but also the costs of querying the Big Dataset.

Among various subsampling techniques, the design inspired
subsampling methods attracted great interest in the last few
years. A review of these methods is available in Yu et al. (2023),
who classify them according to the different kinds of design
adopted:

@ optimal design

@ orthogonal design

@ space filling design
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Sample selection based on the theory of optimal design

The theory of optimal design is a guide to draw a subsample
containing the most informative observations to provide accurate
statistical inference with minimum cost.

Optimal subsamples lie on the boundary of the region.

Drawback: Big Datasets usually are the result of passive
observation thus abnormal values may be present.

Laura Deldossi Accounting for outliers in optimal subsampling methods



Sample selection based on the theory of optimal design

The theory of optimal design is a guide to draw a subsample
containing the most informative observations to provide accurate
statistical inference with minimum cost.

Optimal subsamples lie on the boundary of the region.

Drawback: Big Datasets usually are the result of passive
observation thus abnormal values may be present.

Qutliers (in red)

D optimal sample

-40 -30 -20 10 O 10 20

x

-40 -30 -20 <10 0 10 20

x

-40 -30 -20 <10 0 10 20

X

Laura Deldossi

Accounting for outliers in optimal subsampling methods



OUR GOAL

To select a subsample to produce an efficient parameter
estimate (or an accurate prediction) for the model generating
the whole dataset apart from a few outliers.
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2. Framework and notation

Assume that N independent responses have been generated from a
super-population model

Yi=xB+¢e, i=1,...,N,

_16: (ﬁovﬁlw"aﬁk)—r

_ XiT = (1,)"(,.T) with X; = (xi1, . .. ,Xik)T

- ¢ iid random errors with zero mean and equal variance o?.

- We assume that N (the number of items of the Big Dataset) is
much larger than k (the number of features), for this reason we do
not consider data reduction in the features domain (dimensionality
reduction techniques).

- U={1,..., N} denotes the population of units under study

- sy ={h,...,in} C U denotes a subsample without replications
of size n from U
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- Given the sample s, = {1, ..., in}, the least squares estimator
of B is

N -1y
B=08(sn) =(XTX)IXTY = (> xx/ | D x Yol
(=1 /=1

where:

X is the n x (k + 1) matrix whose rows are x; for i € s,

Y = (Yi,...,Y;)" is the vector of responses of the units in s,
and

1 ifles,
p=4- TEES ithe=1, ... N
0 otherwise

is the sample inclusion indicator.
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Precise estimation of the parameters

Precision measure

When the inferential goal is to get a precise estimate of 3, a
sample s, should be selected drawing the n observations with the
smallest generalized variance of B: o?|XTX|~! or with the largest
determinant of the precision matrix: o —2|X " X]|.

D-optimal subsampling

N

Z ngz— /g

/=1

sP = argsup

" sn={l,..,In} 0 otherwise

{1 if £ s,
5 /Z:

A commonly applied algorithm to determine the D-optimal sample
is the well known exchange algorithm (Chp. 12 in Atkinson et al.
(2007)).
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Algorithm 1: Exchange algorithm for D-optimality

Algorithm 1 Exchange Algorithm for D-optimality

Require: Design matrix X, sample size n, initial sample ssbo), tmaz, N
Ensure: D-optimal sample

1: Sett =10

2: while t < t,,,4, do

3: Select randomly N units from {U — sg,,t)} to form the set of candidate

points for the exchange, C(*)

4 Select from C®) the observation j, = arg II(I?X w]T(XtTXt)_la:j
ject
5: Add unit j, to s&f ) to form the augmented sample 5211 of size n + 1
6: From sgjrl identify the unit with the smallest prediction variance
im = argmin hy;
i€ s®
"=n41
o s (t) - . . (t+1)

7: Remove unit i,, from s, to obtain the updated sample s,

8: Set t =t +1
9: end while

Augmentation step
(step 5)

add the point x;, that
provides the maximum
increase in the
determinant of the
precision matrix. This
is the point with the
largest leverage score.

Deletion step (step 7)

delete the point x; |
that provides the
minimum decrease in
the determinant of the
precision matrix, that
is the unit with the
smallest leverage
score.
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High leverage points

The units with the largest leverage score can be
good or bad:

- they are good (blue points) when the related

response is not an outlier and thus their inclusion 8
would reduce the variance of the parameters’ >
estimates;

- they are bad (red points) when they are associated s

to an “abnormal” response and thus it might alter NS A e
the model fitted by the bulk of the data.

According to Hoaglin and Welsch (1978) an observation x; with
i=1,...,nis called an high leverage point when

hi =% (XTX)"'x; > vy (k+1)/n

where 11 is a tuning parameter usually set equal to 2.
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3. D-optimal sample without high leverage

points/outliers

To construct a D-optimal sample avoiding (as much as possible)
high leverage points/outliers, we propose two algorithms

@ Algorithm 2, which is a non-informative method (not based
on the response observations) and produces D-optimal
samples without high leverage points;

@ Algorithm 3, which is an informative method (based on the
response observations) and gives D-optimal samples without
outliers.

Modifications of the exchange algorithm

@ switching the augmentation and deletion steps;

o changing the set C(t) where the observation to be added is
searched.
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Algorithm 2: Non-informative D-optimal sample without

high leverage points

Algorithm 2 Non-informative D-optimal sample without high leverage points
(0) \7

Deletion steps (step

Require: Design matrix X, sample size n, initial sample sy ', v1, tmaz, N 3-4)
Ensure: D-optimal sample without high leverage points
1. Set t =0 delete the unit iy with
. the smallest leverage
2. while t < t,,,,, do score, thus obtaining a
3: Identify the unit i,, = arg min h;; reduced sample of size
ics® n—1.
4 From (3), compute the inverse of the information matrix without i,,:
(x; X))

5: Select randomly N units from {U - S(t>}
6: From (4), compute h, ;. (x;) (j = 1,...,N), to identify the set of
candidate points C = {j: hy i, < hi,i, (w]) < EELY

7: Select from C(*) the observation j, = arg max wT(X X)) x;
jec

Augmentation steps
Vimim (step 7-8)

add the unit j, in C()
11 that provides the

8: Update s by replacing unit 4,, with j,, to form s largest leverage score
9: Sett=1t+1 when exchanged with
. o the unit ip, .
10: end while

We provide also an algorithm to find out an initial sample st in the bulk of
the data.
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Analytical details regarding step 6 of Algorithm 2

Theorem 1 Let ;X be the design matriz obtained from X exchanging x;,, with

xj, then
-1
Biinn (@) = 2] (;X{ Xe) )
where . A
(XT5Xe) =T X0 - (X0 5 (xT X0 %)
with

A= miTm(XtTXt)fle (:cjw,Tm + mim:ch) +[1-— mZn(XtTXt)flwim] mja:;»r

—[1 +a:jT(XtTXt)71mj] a:ima:;m;

d=[1—a] (X X)) e, [+ 2] (X Xe)  ag) + [, (X7 X)),

.
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Algorithm 3: Informative D-optimal sample witho

outliers

Algorithm 3 Informative optimal subsample without outliers

Require: Dataset D, sample size n, initial sample s&”), V1, tmaz, N
Ensure: Informative D-optimal sample without outliers

1: Set t=0
2: while ¢t < t,,4, do
3: Identify the unit 4,, = argmin h;;
ies
4: From (3), compute the inverse of the information matrix without 4,,:
(X Tx;)!

5: Select randomly N units from {U — sff )}

6: From (4), compute h;, ;. (x;) (j = 1,...,N), to identify the set of

candidate points C(*) according to (2) CG= o
7: Select from C*) the observation j, = arg max a:jT()(,’TX?)’la:J (Y- Y(i))T(Y* (i))
. e e (k+1)82
8: Compute Cook’s distance for unit j,:
o2
Y, =Y, T &
Cj, = (Y. /:‘? . i (T5,) . where Y(;) is the fit
. (F+1)6% (1~ hi,i, (25,)) without the i-th unit. It
9: if Cj, < -L/n’ ‘then measures how much all
10: Update s by replacing unit 4,, with j,, to form SiFD of the fitted values in the
. y _ model change when the
11: Set t =141 . >
N else i-th data point is
12 . deleted. See Chatterjee
13: reject the exchange and go back to step 5 et al (1986).
14: end if

15: end while
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Example (follows)

Non-informative D-optimal sample Informative D-optimal sample
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4. Optimal subsampling to get accurate prediction

Prediction accuracy

When the inferential goal is to get accurate predictions on a set of
values X = {xo1, .., Xon, }, We should select the observations
minimizing the overall prediction variance:
N() NO
Z MSPE(Y0;|X0J', X) = ZE[(Y(), = ,[L(),')2|Xoj, X] =
i=1 i=1
2. Trace[Xo(XTX)"!XJ] = o2 Trace[(X " X)"1X] Xo],
where Yoj = xoT,ﬁ is the prediction of ug; = E(Yoi|Xo;) and X is the
No x k matrix whose i-th row is x;, i =1, ..., Np.

I-optimal subsampling

o 1 1 ife
/ ; T T It £ € s,
s, = arginf Trace E x¢X, | Xo Xol|, =
! sn:{/%,...,/,\,} ( o e) 070 ‘ {0 otherwise
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Algorithm 4: Exchange algorithm for the l-optimality

Algorithm 4 Non-informative I-optimal sample without high leverage points

Require: Design matrix X, sample size n, initial sample sy, ’, prediction-set

(0)

Xo = {T’Ola s ,Cl)oNO}, V1, tmazs, N

Ensure: I-optimal sample without high leverage points

1:
2:
3:

Set t =0
while ¢ < ¢4, do

Identify the unit
T(X X)) X Xo (X, X)L a;
i = arg min z (X X) = OT o ( 1t )
st 1-z/ (X, Xy) 'y
From (3), compute the inverse of the information matrix without i,,:
(X X))
Select randomly N units from {U - 55{’)}
From (4) and (9), compute hi, i, (®;) and ki, (x;) (G = 1,...,N),

to identify the set of candidate points C*) according to (8)
Select from C*) the ostervation .
) @] (X' X)) X Xo (X' X))y
ja = arg max— T e
jec® l+zi (X, X))z
Update sy(f) by replacing unit i,, with j,, to form sgﬂ)
Sett=t+1

. end while

Deletion steps (step
3-4)

delete the unit i,
whose omission
minimises the
increment in the
overall mean squared
prediction error.

Augmentation steps
(step 7-8)

add the unit j, in C()
that maximises the
decrease in the overall
mean squared
prediction error
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Analytical details regarding step 6 and 7 of Algorithm 4

Candidate points set

. - k+1
c) = {j 2 i (®5) > iy, O R, (25) <1 : } 5 (8)

where

. ] (X X)) XJ X0 (X[ X)) e
" 1— 2T (X X;) ’

It () = o (X X))~ X Xo X/ ;%)
T b\ 1— mT(-XT X)) la; ?
j \JENt jEt J

(9)

jX¢ is the matrix obtained from X; by exchanging ;6 with z; and
(;X/ ;jX¢)~! can be computed from Equation (5).
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Example (follows)

Prediction set Xy Non-informative l-opt. Informative l-opt.
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5. A simulation study

H x S datasets (H

=30 and S = 50) of size N = 10°, each one

including Ny = 500 high leverage points/outliers are simulated:

hDs = [hX7 hys]v

1

h=1,...,H, s=1,...,5, where
-
hXq hX11 hX1k
T
hXpy hXN1 hXNk
nY1,1 nYs1
P hYS —
hY1,N nYs.n

Laura Deldossi
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Simulated design matrix

Specifically, k =10 and h)?i = (X,'17 . 7X,'10)T, for i = 1, ey N,
are generated as follows:
@ xj1, X2 and x;3 are independently distributed as U(0, 5);
° (x,-4,><,-5,><,-6,x,-7)T is distributed as a multivariate normal r.v.
with zero mean and
a. fori=1,...,(N — Noyt): covariance matrix X; = [a,s], with
ar=9and a,s=-1(r#s), r,s=1,...,4
b. for i = (N — Noyt) +1,..., N: covariance matrix
¥1.out = [ars], with a,, =25 and as =1 (r # s),
r,s =1,...,4; (outlier in the factor space);
o (xig, Xj9) | is distributed as a multivariate t-distribution with 3
1 05
05 1

degrees of freedom and scale matrix X, = [

@ xj19 follows a Poisson distribution P(5).
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Simulated response vectors

For each design matrix , X, we simulate S independent response
vectors ,Ys, whose i-th item is

WYsi=nx] B+es, i=1,...,N, with

o B=(1,1,1,1,2,2,2,2,1,1,1) and o = 3 for
I.:].,...,N*Nout;

o B=(1,1,1,1,-2,-2,-2,-2,1,-1,-1), o = 20 for
i=(N—Noy)+1,...,N (Outliers)
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Different subsampling algorithms

At each simulation step (h,s), with h=1,...,Hand s=1,...,S,

to draw a subsample s,(,h’s) from the simulated dataset ,Ds, we

have applied the following algorithms:

@ Non-informative | (Algorithm 4)

@ Non-informative D (Algorithm 2)

© Informative | (Algorithm 4 with Cook’s distance steps)
O Informative D (Algorithm 3)

@ Simple random sampling (SRS): passive learning selection

To implement the l-optimality procedure, we have generated a
prediction set Xy = {xo1,...,Xon,} Without high leverage points
(No = 500).
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Assessing the distinct subsampling methods

a)

b)

We check goodness of the subsampling methods wrt D- and
lI-optimality criteria.
To compare the performance of the different subsamples in

terms of prediction ability on X, we have also generated the
corresponding responses (without outliers):

Do = {(xo01, Y01), - - - > (Xong: Yono) }-

To further assess their prediction ability we have generated
an independent test set X7 = {x71,..., XN, } Of size

N+ = 500 without high leverage points and the corresponding
responses (without outliers):

Dt = {(x11,y711)s- - -» (XTN7s YTNS) }-
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Monte Carlo averages for the subsamples of size n = 500

Optimality properties

Algorithm  MSPEy, Log(det)

Non-inf. | 0.0857 93.4269
Non-inf. D 0.0947 94.3877
Inf. | 0.0938 92.0869

Inf. D 0.1030 92.7748
SRS 0.2056 82.5234

- The average mean squared prediction error in X :

h,s
MSPEY? =

-1
Tr N ) Tl(hﬁ) XTX
R ace {(Z,:l hXihX; 1y ) 0 A0 I(h,s)_ {1 if e e s,(,h’s)

No ¢ T 10 otherwise

- The logarithm of the determinant of the precision matrix:

¢ (h,s)
T ,(h,s
E hXjhXj Iy

i=1

Log(det)"*) = log
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Monte Carlo averages for the subsamples of size n = 500

Predictive abilities

Algorithm  SPEy, SPEx. SEp, SEp,
Non-inf. I  6.5104 6.8020 16.0792 16.3538
Non-inf. D 6.1011 6.2945 15.5982  15.7969
Inf. | 0.1464 0.1494  9.4445 9.5337

Inf. D 0.1594 0.1601 9.4564 9.5448
SRS  0.2629 0.2671 9.5683 9.6594

- The average squared prediction error in Xy and in X7 = {x71,...,X7Nn; }:

h h,s
hs) S (9§ — i) and SPE() — P 1(}/(7, ) )

SPEY ,
No AT Nt

- The standard error in the prediction set Dy and in the test set Dy:

E’{V:Ol (}/}(glh’S)_yO") and SE(”S) E:Vl(y'(l'i:S)_yT")2
No Nt

SE(h s)
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Effect of a different percentage of outliers on prediction

SPEy, SPEx,
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] 8
w | 4
2 2
o | o
o o o
T T T T T T T T T T
0.01 0.02 0.03 0.04 0.05 0.01 0.02 0.03 0.04 0.08
% of outliers % of outliers
SEp, SEp,
8 2
2 2
] 8
R oy e
o | o
o o
T T T T T T T T T T
0.01 0.02 0.03 0.04 0.05 001 0.02 0.03 0.04 0.05
% of outliers % of outliers

SRS = green  Inf.D = red Inf.I = black ‘
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7. Conclusion and future developments

Major features of our approach
e our approach may be implemented in a non-informative and
informative setting, according to the available information
e it guarantees that the selected samples are the most
informative for estimation (D-optimality) or predictive
purposes (l-optimality) of the model generator of the majority
of the data

Future developments
e Extension of the proposed algorithm to the generalized linear
model
e Account for model uncertainty in presence of outliers
e Comparison with orthogonal and space-filling design
subsampling methods (which are robust wrt misspecification
model) in presence of outliers
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Thank you for your attention
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6. A real data example

The diamonds data set in the ggplot2 package contains the prices and the
specifications for more than 50,000 diamonds. There are 7 factors in this data
set:

the carat x3, which is the weight of the diamond, ranges from 0.2 to 5.01

the quality x2 of the diamond cut which is coded as one if the quality is better
than “Very Good" and zero otherwise

the level of diamond color x3 which is coded as one if the quality is better than
“level F" and zero otherwise

a measurement of the diamond clearness x4 wich takes value one if the quality is
better than “SI1” and zero otherwise

the total depth percentage x5
the width at the widest point xg

060 © 0 00

the volume of the diamond x7

The response variable y is logio of the price. To avoid multicollinearity x; has
not been considered (higly correlated with x7).
Moreover the quadratic effect of x; has been included in the model.

the prediction of the price of the diamonds with a volume larger than 200 mm®
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Cross-validation averages for the subsamples of size

n = 100

@ Prediction set Xy randomly selected from all the diamonds with x; larger
than 200 mm?®.

@ The remaining dataset has been divided in 4 folds of the same size. In
rotation, one fold represents the test set, while the others form the
training set

@ In each test set only diamonds with volume larger than 200 mm?® are

considered and the outliers (if present) are removed.

Algorithm  MSPEy, Log(det) SEp, SEp,
non-inf. | 0.0452 65.2964 0.0083  0.0092
non-inf. D 0.0602 69.4402 || 0.0569 0.0549
infl  0.0454 65.1758 || 0.0079 0.0084
inf D 0.0620 65.9726 0.0097 0.0122
SRS 0.0998 60.9025 0.0117  0.0109

N.B. Ao and X7 include diamonds with a volume larger than 200 mm?®,
N = 2000, tmax = 2000.
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Algorithm 5: Initialization step for Algorithm 2 and 4

Goal: To find out an initial sample s,(,o) in the bulk of the data.

Algorithm 5 Initialization step for Algorithms 2 and 4

Require: Design matrix X, sample size n, va, tymaz, N
Ensure: 9510 ) initial sample without high leverage points

1: From U select without replacement a simple random sample of size n, ri,n)
2: Set t =0
3. while t < t,,4, do
4 Compute the leverage scores for the current sample
hii =z} (X, X)) 'a;, where i € rsf)
5: Identify unit i,, = argmax h;;
ierl?
6: if hi,i,, <o ’%1 then
T Set sﬁ,o) = rw and stop the iterative procedure
8: else
9: Select randomly N units from {U - T‘S )}
Let x;, with j =1,... ,;"\77 the observations for these units
10: Compute (;X,";X;)~! from (5), where ;X is the design matrix
obtained from X; exchanging x; , with x;
11: Determine the leverage scores h;,i,, (z;) = :::;r GX[ X)) ey
12: Identify the set of points candidate for the exchange with i,,:
CO = {j+ hipi, () < o 2}
13: Select at random a unit j, from C*)
14: Determine TSLHU by replacing unit i,, with j, in 7'§,f')
15: Set (X Xe1)™ = (5, X/, X0) ™!
16: Sett=t+1
17: end if

18: end while
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Example (follows): Comparison with Iboss if outliers are

removed after the sample selection (Nout=10)

Non-informative D'Op“mal Sample Informative D'Optimﬂl Sample
g I g |*
- # - #

#
o | @ 4 o |
2 g
- -
o | o |
3 b
#
T T T T T T T T
40 30 20 10 O 10 20 40 -30 -20 10 O 10 20
X X
Iboss sample Iboss sample

(=] (=]
o (=]
(=] (=]
uw uw

0
0

-50

-50

40 20 0 10 20
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Example (follows): Comparison with Iboss if outliers are

removed after the sample selection (Nout=200)

Non-informative D-optimal sample Informative D-optimal sample

150
|

#
#

50

-50

-150

Iboss sample Iboss sample

40 20 0 20 40
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