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1. Motivation of the work

Nowadays, advances in technology have brought the ability to
collect, transfer and store large datasets.

Data reduction may help in reducing not only the computational
burden but also the costs of querying the Big Dataset.

Among various subsampling techniques, the design inspired
subsampling methods attracted great interest in the last few
years. A review of these methods is available in Yu et al. (2023),
who classify them according to the different kinds of design
adopted:

optimal design

orthogonal design

space filling design
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Sample selection based on the theory of optimal design

The theory of optimal design is a guide to draw a subsample
containing the most informative observations to provide accurate
statistical inference with minimum cost.
Optimal subsamples lie on the boundary of the region.

Drawback: Big Datasets usually are the result of passive
observation thus abnormal values may be present.

Example
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OUR GOAL

To select a subsample to produce an efficient parameter
estimate (or an accurate prediction) for the model generating
the whole dataset apart from a few outliers.
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2. Framework and notation

Assume that N independent responses have been generated from a
super-population model

Yi = x⊤i β + εi , i = 1, . . . ,N,

- β = (β0, β1, . . . , βk)
⊤

- x⊤i = (1, x̃⊤i ) with x̃i = (xi1, . . . , xik)
⊤

- εi iid random errors with zero mean and equal variance σ2.

- We assume that N (the number of items of the Big Dataset) is
much larger than k (the number of features), for this reason we do
not consider data reduction in the features domain (dimensionality
reduction techniques).

- U = {1, . . . ,N} denotes the population of units under study

- sn = {i1, . . . , in} ⊆ U denotes a subsample without replications
of size n from U
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- Given the sample sn = {i1, . . . , in}, the least squares estimator
of β is

β̂ = β̂(sn) = (X⊤X)−1X⊤Y =

(
N∑

ℓ=1

xℓx
T
ℓ Iℓ

)−1 N∑

ℓ=1

xℓ Yℓ Iℓ

where:
X is the n × (k + 1) matrix whose rows are x⊤i for i ∈ sn
Y = (Yi1 , . . . ,Yin)

⊤ is the vector of responses of the units in sn
and

Iℓ =

{
1 if ℓ ∈ sn

0 otherwise
, with ℓ = 1, . . . ,N

is the sample inclusion indicator.
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Precise estimation of the parameters

Precision measure

When the inferential goal is to get a precise estimate of β, a
sample sn should be selected drawing the n observations with the
smallest generalized variance of β̂: σ2|X⊤X|−1 or with the largest
determinant of the precision matrix: σ−2|X⊤X|.

D-optimal subsampling

sDn = arg sup
sn={I1,...,IN}

∣∣∣∣∣
N∑

ℓ=1

xℓx
⊤
ℓ Iℓ

∣∣∣∣∣ , Iℓ =

{
1 if ℓ ∈ sn

0 otherwise

A commonly applied algorithm to determine the D-optimal sample
is the well known exchange algorithm (Chp. 12 in Atkinson et al.
(2007)).
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Algorithm 1: Exchange algorithm for D-optimality
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3 Modified Exchange Algorithms

The common structure of the t-th iteration of an exchange algorithm consists in
adding a unit, chosen from a list of candidate points C(t), to the current sample

s
(t)
n , and then deleting an observation from it. The choice of the augmented
and deleted points is based on the achievement of some optimality criterion.
For instance, for D-optimality, Algorithm 1 describes the classical exchange
procedure (see Chp. 12 in [8]).

Algorithm 1 Exchange Algorithm for D-optimality

Require: Design matrix X, sample size n, initial sample s
(0)
n , tmax, Ñ

Ensure: D-optimal sample
1: Set t = 0
2: while t < tmax do

3: Select randomly Ñ units from
{
U − s

(t)
n

}
to form the set of candidate

points for the exchange, C(t)

4: Select from C(t) the observation ja = argmax
j∈C(t)

x⊤
j (X

⊤
t Xt)

−1xj

5: Add unit ja to s
(t)
n to form the augmented sample s

(t)
n+1 of size n+ 1

6: From s
(t)
n+1 identify the unit with the smallest prediction variance

im = argmin
i∈s

(t)
n+1

hii

7: Remove unit im from s
(t)
n+1 to obtain the updated sample s

(t+1)
n

8: Set t = t+ 1
9: end while

Our main idea is to modify Algorithm 1 by not proposing for the exchange
the high leverage points, thus avoiding the inclusion in the sample of high
leverage scores with abnormal responses, which could lead to wrong inferential
conclusions. This goal is reached by:

a) switching the augmentation and deletion steps;
b) changing the set C(t) where the observation to be added is searched.

If the information about the responses is not exploited in step b (to iden-
tify C(t)), then the modified D-optimal sample is non-informative for the
parameters of interest. The non-informative procedure is described in detail in
Subsection 3.1.

Preventing high leverage points, however, does not guard from all the out-
liers in Y : there may exist points that are in the core of the data with respect
to the features, while being abnormal with respect to the response variable. In
Subsection 3.2 we propose another version of the algorithm, where (in step b)
we employ the responses to remove the outliers in Y . Note that the obtained

Augmentation step
(step 5)

add the point xja that
provides the maximum
increase in the
determinant of the
precision matrix. This
is the point with the
largest leverage score.

Deletion step (step 7)

delete the point xim
that provides the
minimum decrease in
the determinant of the
precision matrix, that
is the unit with the
smallest leverage
score.
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High leverage points

The units with the largest leverage score can be
good or bad:

- they are good (blue points) when the related
response is not an outlier and thus their inclusion
would reduce the variance of the parameters’
estimates;

- they are bad (red points) when they are associated

to an “abnormal” response and thus it might alter

the model fitted by the bulk of the data.

According to Hoaglin and Welsch (1978) an observation xi with
i = 1, . . . , n is called an high leverage point when

hii = x⊤i (X
⊤X)−1xi > ν1(k + 1)/n

where ν1 is a tuning parameter usually set equal to 2.
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3. D-optimal sample without high leverage
points/outliers

To construct a D-optimal sample avoiding (as much as possible)
high leverage points/outliers, we propose two algorithms

Algorithm 2, which is a non-informative method (not based
on the response observations) and produces D-optimal
samples without high leverage points;

Algorithm 3, which is an informative method (based on the
response observations) and gives D-optimal samples without
outliers.

Modifications of the exchange algorithm

switching the augmentation and deletion steps;

changing the set C(t) where the observation to be added is
searched.
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Algorithm 2: Non-informative D-optimal sample without
high leverage points
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Proof Expression (5) can be obtained from Lemma 3.3.1 in [10] after some cumber-
some algebra. □

In force of the upper bound in (2), our proposal is to consider as can-

didates for the exchange only observations in {U − s
(t)
n } which are not high

leverage points. In addition, to speed up the algorithm we reduce the number
of exchanges by imposing the lower bound in (2). Without this lower bound, if
himim(xj) ≤ himim , the new observation j could be removed at the subsequent
iteration.

Algorithm 2 outlines the steps to select a D-optimal subsample without
high leverage points.

Algorithm 2 Non-informative D-optimal sample without high leverage points

Require: Design matrix X, sample size n, initial sample s
(0)
n , ν1, tmax, Ñ

Ensure: D-optimal sample without high leverage points
1: Set t = 0
2: while t < tmax do
3: Identify the unit im = argmin

i∈s
(t)
n

hii

4: From (3), compute the inverse of the information matrix without im:
(X−⊤

t X−
t )

−1

5: Select randomly Ñ units from
{
U − s

(t)
n

}

6: From (4), compute himim(xj) (j = 1, . . . , Ñ), to identify the set of
candidate points C(t) =

{
j : himim < himim(xj) < ν1

k+1
n

}

7: Select from C(t) the observation ja = argmax
j∈C(t)

x⊤
j (X

−⊤
t X−

t )
−1xj

8: Update s
(t)
n by replacing unit im with ja, to form s

(t+1)
n

9: Set t = t+ 1
10: end while

3.2 Informative D-optimal sample without outliers

Whenever the response values are available, this information should be
exploited by the exchange algorithm, obtaining an informative D-optimal
subsample.

According to [5] an influential data point in Y is an observation that
strongly influences the fitted values. To identify these influential values, we
adopt Cook’s distance, but other measures can be similarly applied. Cook’s
distance for the i-th observation, Ci, quantifies how much all of the fitted
values in the model change when the i-th data point is deleted:

Ci =
(Ŷ − Ŷ(i))

⊤(Ŷ − Ŷ(i))

(k + 1)σ̂2

Deletion steps (step
3-4)

delete the unit im with
the smallest leverage
score, thus obtaining a
reduced sample of size
n − 1.

Augmentation steps
(step 7-8)

add the unit ja in C(t)

that provides the
largest leverage score
when exchanged with
the unit im .

We provide also an algorithm to find out an initial sample s
(0)
n in the bulk of

the data.
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Analytical details regarding step 6 of Algorithm 2

Theorem 1
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optimal subsample becomes informative because of the dependence on the Y
values.

3.1 Non-informative D-optimal samples without high
leverage points

Let s
(t)
n be the current sample of size n and s

(0)
n an initial sample which does

not include high leverage points (see Algorithm 5 in Appendix for a detailed
procedure to get a convenient initial sample).

To update s
(t)
n , firstly we remove from it the unit im with the smallest

leverage score,

im = argmin
i∈s

(t)
n

x⊤
i (X

⊤
t Xt)

−1xi = argmin
i∈s

(t)
n

hii,

thus obtaining a reduced sample of size n − 1, where Xt denotes the design

matrix associated to s
(t)
n .

Let X−
t be the design matrix attained by leaving out the row xim from

Xt. Subsequently, we add the unit ja ∈ C(t) with the largest leverage score

x⊤
ja
(X−

t
⊤
X−

t )
−1xja , where the set of candidate points for the exchange at the

current iteration is

C(t) =

{
j : himim < himim(xj) < ν1

k + 1

n

}
, (2)

(X−
t
⊤
X−

t )
−1 = (X⊤

t Xt)
−1 + (X⊤

t Xt)
−1 ximxT

im

1− xT
im
(X⊤

t Xt)−1xim

(X⊤
t Xt)

−1,

(3)
(see [9] p.153 to get (3)) and himim(xj) is the leverage score obtained by

exchanging xim with xj for j ∈ {U − s
(t)
n }. The next theorem provides an

analytical expression for himim(xj), which reduces the computational burden
of the algorithm.

Theorem 1 Let jXt be the design matrix obtained from Xt exchanging xim with
xj , then

himim(xj) = x⊤
j

(
jX

⊤
t jXt

)−1
xj (4)

where (
jX

⊤
t jXt

)−1
= (X⊤

t Xt)
−1 − (X⊤

t Xt)
−1 A

d
(X⊤

t Xt)
−1, (5)

with

A = x⊤
im(X⊤

t Xt)
−1xj (xjx

⊤
im + ximx⊤

j ) + [1− x⊤
im(X⊤

t Xt)
−1xim ]xjx

⊤
j

− [1 + x⊤
j (X⊤

t Xt)
−1xj ]ximx⊤

im ;

d = [1− x⊤
im(X⊤

t Xt)
−1xim ] [1 + x⊤

j (X⊤
t Xt)

−1xj ] + [x⊤
im(X⊤

t Xt)
−1xj ]

2.
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Algorithm 3: Informative D-optimal sample without
outliers
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=
(Yi − Ŷi)

2

(k + 1)σ̂2
· hii

(1− hii)2
, i = 1, . . . , n, (6)

where Ŷ = Xβ̂⊤, σ̂2 is the residual mean square estimate of σ2 and Ŷ(i) =

Xβ̂⊤
(i) is the vector of predicted values when the i-th unit is removed from

the data set D. According to a general practical rule, any observation with a
Cook’s distance larger than 4/n may be considered as an influential point.

To get an informative D-optimal sample, Algorithm 2 is modified by
including the additional steps illustrated in Algorithm 3.

Algorithm 3 Informative optimal subsample without outliers

Require: Dataset D, sample size n, initial sample s
(0)
n , ν1, tmax, Ñ

Ensure: Informative D-optimal sample without outliers
1: Set t = 0
2: while t < tmax do
3: Identify the unit im = argmin

i∈s
(t)
n

hii

4: From (3), compute the inverse of the information matrix without im:
(X−⊤

t X−
t )

−1

5: Select randomly Ñ units from
{
U − s

(t)
n

}

6: From (4), compute himim(xj) (j = 1, . . . , Ñ), to identify the set of
candidate points C(t) according to (2)

7: Select from C(t) the observation ja = argmax
j∈C(t)

x⊤
j (X

−⊤
t X−

t )
−1xj

8: Compute Cook’s distance for unit ja:

Cja =

(
Yja − Ŷja

)2

(k + 1) σ̂2
· himim(xja)

(1− himim(xja))
2

9: if Cja < 4/n then

10: Update s
(t)
n by replacing unit im with ja, to form s

(t+1)
n

11: Set t = t+ 1
12: else
13: reject the exchange and go back to step 5
14: end if
15: end while

Example 2. Figure 2 illustrates the performance of the proposed algorithms
in comparison with the Iboss subsampling method (proposed by [2]) and the
simple random sample, in the artificial dataset of Example 1. As expected,
the Iboss algorithm provides a subset similar to the D-optimal sample (cfr.
with Fig. 1) since it selects the points on the boundary of the design space,
thus including most of the outliers. As a consequence, the true model (black
line) and the fitted model (green line) are quite distinct. Neither the simple

Cook’s distance

Ci =(
Ŷ −Ŷ(i)

)⊤(
Ŷ −Ŷ(i)

)
(k + 1) σ̂2

where Ŷ(i) is the fit

without the i-th unit. It
measures how much all
of the fitted values in the
model change when the
i-th data point is
deleted. See Chatterjee
et al (1986).
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Example (follows)
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Example (follows)
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4. Optimal subsampling to get accurate prediction

Prediction accuracy

When the inferential goal is to get accurate predictions on a set of
values X0 = {x01, . . . , x0N0}, we should select the observations
minimizing the overall prediction variance:

N0∑

i=1

MSPE (Ŷ0i |x0j ,X) =
N0∑

i=1

E[(Ŷ0i − µ0i )
2|x0j ,X] =

σ2 · Trace[X0(X
⊤X)−1X⊤

0 ] = σ2 · Trace[(X⊤X)−1X⊤
0 X0],

where Ŷ0j = xT0i β̂ is the prediction of µ0i = E (Y0i |x0i ) and X0 is the

N0 × k matrix whose i-th row is x⊤
0i , i = 1, . . . ,N0.

I-optimal subsampling

s In = arg inf
sn={I1,...,IN}

Trace



(

N∑

ℓ=1

xℓx
⊤
ℓ Iℓ

)−1

X⊤
0 X0


 , Iℓ =

{
1 if ℓ ∈ sn

0 otherwise
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Algorithm 4: Exchange algorithm for the I-optimality
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Algorithm 4 Non-informative I-optimal sample without high leverage points

Require: Design matrix X, sample size n, initial sample s
(0)
n , prediction-set

X0 = {x01, . . . ,x0N0
}, ν1, tmax, Ñ

Ensure: I-optimal sample without high leverage points
1: Set t = 0
2: while t < tmax do
3: Identify the unit

im = argmin
i∈s

(t)
n

x⊤
i (X⊤

t Xt)
−1 X⊤

0 X0 (X⊤
t Xt)

−1 xi

1− xT
i (X

⊤
t Xt)−1xi

4: From (3), compute the inverse of the information matrix without im:
(X−⊤

t X−
t )

−1

5: Select randomly Ñ units from
{
U − s

(t)
n

}

6: From (4) and (9), compute himim(xj) and h̃imim(xj) (j = 1, . . . , Ñ),
to identify the set of candidate points C(t) according to (8)

7: Select from C(t) the observation

ja = argmax
j∈C(t)

x⊤
j (X−⊤

t X−
t )

−1 X⊤
0 X0 (X−⊤

t X−
t )

−1 xj

1 + xT
j (X

−⊤
t X−

t )
−1xj

8: Update s
(t)
n by replacing unit im with ja, to form s

(t+1)
n

9: Set t = t+ 1
10: end while

Precisely, for each h = 1, . . . ,H, N iid repetitions of a 10-variate
explanatory variable hx̃i = (xi1, . . . , xi10)

⊤ are generated as follows:

1. xi1, xi2 and xi3, for i = 1, . . . , N , are independently distributed as U(0, 5);
2. (xi4, xi5, xi6, xi7)

⊤ is distributed as a multivariate normal r.v. with zero
mean and

2.a. for i = 1, . . . , (N −Nout): covariance matrix Σ1 = [ars], with arr = 9
and ars = −1 (r ̸= s), r, s = 1, . . . , 4;
2.b. for i = (N −Nout) + 1, . . . , N : covariance matrix Σ1.out = [ars], with
arr = 25 and ars = 1 (r ̸= s), r, s = 1, . . . , 4;

3. (xi8, xi9)
⊤, for i = 1, . . . , N , is distributed as a multivariate t-distribution

with 3 degrees of freedom and scale matrix Σ2 =

[
1 0.5
0.5 1

]
;

4. xi10, for i = 1, . . . , N , is distributed as a Poisson distribution P(5).

For each generated N × (k + 1) design matrix hX, whose i-th row is hx
⊤
i =

(1, hx̃
⊤
i ) (i = 1, . . . , N), we have simulated S = 50 independent N×1 response

vectors hYs (with s = 1, . . . , S), whose i-th item is

hYs,i = hx
⊤
i β + εsi, i = 1, . . . , N,

with

Deletion steps (step
3-4)

delete the unit im
whose omission
minimises the
increment in the
overall mean squared
prediction error.

Augmentation steps
(step 7-8)

add the unit ja in C(t)

that maximises the
decrease in the overall
mean squared
prediction error
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Analytical details regarding step 6 and 7 of Algorithm 4

Candidate points set
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should be updated by removing the unit im which minimises the increase in
the overall mean squared prediction error. From the results given in Appendix
A of [11], the increment in the overall mean squared prediction error due to
the omission of the unit i is given by

h̃ii =
x⊤
i (X⊤

t Xt)
−1 X⊤

0 X0 (X⊤
t Xt)

−1 xi

1− xT
i (X

⊤
t Xt)−1xi

,

where Xt is the n× k matrix whose rows are xT
i with i ∈ s

(t)
n .

Subsequently, to obtain again a sample of size n, from a set C(t) of candidate
points, we should add the unit ja which maximize the decrease in the overall
mean squared prediction error:

ja = arg max
j∈C(t)

x⊤
j (X−⊤

t X−
t )

−1 X⊤
0 X0 (X−⊤

t X−
t )

−1 xj

1 + xT
j (X

−⊤
t X−

t )
−1xj

,

where X−
t is the design matrix obtained by removing the row xim from Xt

and (X−⊤
t X−

t )
−1 can be computed from (3).

The set of candidate points should be composed by units that are not at
risk to be deleted at the next iteration and are not high leverage points:

C(t) =

{
j : h̃imim(xj) > h̃imim ∩ himim(xj) < ν1

k + 1

n

}
, (8)

where himim(xj) is given in (4),

h̃imim(xj) =
xT
j (jX

⊤
t jXt)

−1 X⊤
0 X0 (jX

⊤
t jXt)

−1 xj

1− xT
j (jX

⊤
t jXt)−1xj

, (9)

jXt is the matrix obtained from Xt by exchanging xim with xj and
(jX

⊤
t jXt)

−1 can be computed from Equation (5).
Algorithm 4 summarizes the steps to select a non-informative I-optimal

sample, while to obtain its informative version, it is enough to incorporate the
additional steps of Algorithm 3.

5 Numerical studies

5.1 Simulation results

In this section, we evaluate the performance of our proposals through a simu-
lation study. We generate H × S random datasets of size N = 106, each one
including Nout = 500 high leverage points/outliers (with H = 30 and S = 50).
The computation of some metrics will illustrate the validity of our procedures
in selecting D- or I-optimal subsamples without outliers.

where
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x⊤
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t Xt)
−1 X⊤
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t Xt)
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1− xT
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⊤
t Xt)−1xi

,

where Xt is the n× k matrix whose rows are xT
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(t)
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Subsequently, to obtain again a sample of size n, from a set C(t) of candidate
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mean squared prediction error:

ja = arg max
j∈C(t)

x⊤
j (X−⊤

t X−
t )

−1 X⊤
0 X0 (X−⊤

t X−
t )

−1 xj

1 + xT
j (X

−⊤
t X−

t )
−1xj

,

where X−
t is the design matrix obtained by removing the row xim from Xt

and (X−⊤
t X−

t )
−1 can be computed from (3).

The set of candidate points should be composed by units that are not at
risk to be deleted at the next iteration and are not high leverage points:

C(t) =

{
j : h̃imim(xj) > h̃imim ∩ himim(xj) < ν1

k + 1

n

}
, (8)

where himim(xj) is given in (4),

h̃imim(xj) =
xT
j (jX

⊤
t jXt)

−1 X⊤
0 X0 (jX

⊤
t jXt)

−1 xj

1− xT
j (jX

⊤
t jXt)−1xj

, (9)

jXt is the matrix obtained from Xt by exchanging xim with xj and
(jX

⊤
t jXt)

−1 can be computed from Equation (5).
Algorithm 4 summarizes the steps to select a non-informative I-optimal

sample, while to obtain its informative version, it is enough to incorporate the
additional steps of Algorithm 3.

5 Numerical studies

5.1 Simulation results

In this section, we evaluate the performance of our proposals through a simu-
lation study. We generate H × S random datasets of size N = 106, each one
including Nout = 500 high leverage points/outliers (with H = 30 and S = 50).
The computation of some metrics will illustrate the validity of our procedures
in selecting D- or I-optimal subsamples without outliers.
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should be updated by removing the unit im which minimises the increase in
the overall mean squared prediction error. From the results given in Appendix
A of [11], the increment in the overall mean squared prediction error due to
the omission of the unit i is given by

h̃ii =
x⊤
i (X⊤

t Xt)
−1 X⊤

0 X0 (X⊤
t Xt)

−1 xi

1− xT
i (X

⊤
t Xt)−1xi

,

where Xt is the n× k matrix whose rows are xT
i with i ∈ s

(t)
n .

Subsequently, to obtain again a sample of size n, from a set C(t) of candidate
points, we should add the unit ja which maximize the decrease in the overall
mean squared prediction error:

ja = arg max
j∈C(t)

x⊤
j (X−⊤

t X−
t )

−1 X⊤
0 X0 (X−⊤

t X−
t )

−1 xj

1 + xT
j (X

−⊤
t X−

t )
−1xj

,

where X−
t is the design matrix obtained by removing the row xim from Xt

and (X−⊤
t X−

t )
−1 can be computed from (3).

The set of candidate points should be composed by units that are not at
risk to be deleted at the next iteration and are not high leverage points:

C(t) =

{
j : h̃imim(xj) > h̃imim ∩ himim(xj) < ν1

k + 1

n

}
, (8)

where himim(xj) is given in (4),

h̃imim(xj) =
xT
j (jX

⊤
t jXt)

−1 X⊤
0 X0 (jX

⊤
t jXt)

−1 xj

1− xT
j (jX

⊤
t jXt)−1xj

, (9)

jXt is the matrix obtained from Xt by exchanging xim with xj and
(jX

⊤
t jXt)

−1 can be computed from Equation (5).
Algorithm 4 summarizes the steps to select a non-informative I-optimal

sample, while to obtain its informative version, it is enough to incorporate the
additional steps of Algorithm 3.

5 Numerical studies

5.1 Simulation results

In this section, we evaluate the performance of our proposals through a simu-
lation study. We generate H × S random datasets of size N = 106, each one
including Nout = 500 high leverage points/outliers (with H = 30 and S = 50).
The computation of some metrics will illustrate the validity of our procedures
in selecting D- or I-optimal subsamples without outliers.
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Example (follows)

Prediction set X 0 Non-informative I-opt. Informative I-opt.
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5. A simulation study

H × S datasets (H = 30 and S = 50) of size N = 106, each one
including Nout = 500 high leverage points/outliers are simulated:

hDs = [hX , hys ], h = 1, . . . ,H, s = 1, . . . ,S , where

hX =




1 hx̃⊤
1

...
...

1 hx̃⊤
N


 =




1 hx11 . . . hx1k
...

...
...

...
1 hxN1 . . . hxNk




↙ ↓ ↘

hY1 =




hY1,1
...

hY1,N


 , · · · , hYS =




hYS ,1
...

hYS ,N



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Simulated design matrix

Specifically, k = 10 and hx̃i = (xi1, . . . , xi10)
⊤, for i = 1, . . . ,N,

are generated as follows:

xi1, xi2 and xi3 are independently distributed as U(0, 5);

(xi4, xi5, xi6, xi7)
⊤ is distributed as a multivariate normal r.v.

with zero mean and

a. for i = 1, . . . , (N − Nout): covariance matrix Σ1 = [ars ], with
arr = 9 and ars = −1 (r ̸= s), r , s = 1, . . . , 4;

b. for i = (N − Nout) + 1, . . . ,N: covariance matrix
Σ1.out = [ars ], with arr = 25 and ars = 1 (r ̸= s),
r , s = 1, . . . , 4; (outlier in the factor space);

(xi8, xi9)
⊤ is distributed as a multivariate t-distribution with 3

degrees of freedom and scale matrix Σ2 =

[
1 0.5
0.5 1

]
;

xi10 follows a Poisson distribution P(5).
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Simulated response vectors

For each design matrix hX , we simulate S independent response
vectors hYs , whose i-th item is

hYs,i = hx⊤
i β + εsi , i = 1, . . . ,N, with

β = (1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1) and σ = 3 for
i = 1, . . . ,N − Nout ;

β = (1, 1, 1, 1,−2,−2,−2,−2, 1,−1,−1), σ = 20 for
i = (N − Nout) + 1, . . . ,N (Outliers)
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Different subsampling algorithms

At each simulation step (h, s), with h = 1, . . . ,H and s = 1, . . . ,S ,

to draw a subsample s
(h,s)
n from the simulated dataset hDs , we

have applied the following algorithms:

1 Non-informative I (Algorithm 4)

2 Non-informative D (Algorithm 2)

3 Informative I (Algorithm 4 with Cook’s distance steps)

4 Informative D (Algorithm 3)

5 Simple random sampling (SRS): passive learning selection

To implement the I-optimality procedure, we have generated a
prediction set X0 = {x01, . . . , x0N0} without high leverage points
(N0 = 500).
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Assessing the distinct subsampling methods

a) We check goodness of the subsampling methods wrt D- and
I-optimality criteria.

b) To compare the performance of the different subsamples in
terms of prediction ability on X0, we have also generated the
corresponding responses (without outliers):

D0 = {(x01, y01), . . . , (x0N0 , y0N0)}.

To further assess their prediction ability we have generated
an independent test set XT = {xT1, . . . , xTNT

} of size
NT = 500 without high leverage points and the corresponding
responses (without outliers):

DT = {(xT1, yT1), . . . , (xTNT
, yTNT

)}.
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Monte Carlo averages for the subsamples of size n = 500

Optimality properties

Algorithm MSPEX0
Log(det)

Non-inf. I 0.0857 93.4269
Non-inf. D 0.0947 94.3877

Inf. I 0.0938 92.0869
Inf. D 0.1030 92.7748
SRS 0.2056 82.5234

- The average mean squared prediction error in X0 :

MSPE
(h,s)
X0

= σ2
Trace

[(∑N
i=1 hx i hx⊤

i I
(h,s)
ℓ

)−1
X⊤

0 X0

]
N0

, I
(h,s)
ℓ =

{
1 if ℓ ∈ s

(h,s)
n

0 otherwise

- The logarithm of the determinant of the precision matrix:

Log(det)(h,s) = log

∣∣∣∣∣
N∑
i=1

hx i hx
⊤
i I

(h,s)
ℓ

∣∣∣∣∣
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Monte Carlo averages for the subsamples of size n = 500

Predictive abilities

Algorithm SPEX0
SPEXT

SED0
SEDT

Non-inf. I 6.5104 6.8020 16.0792 16.3538
Non-inf. D 6.1011 6.2945 15.5982 15.7969

Inf. I 0.1464 0.1494 9.4445 9.5337
Inf. D 0.1594 0.1601 9.4564 9.5448
SRS 0.2629 0.2671 9.5683 9.6594

- The average squared prediction error in X0 and in XT = {xT1, . . . , xTNT
}:

SPE
(h,s)
X0

=

∑N0
i=1(ŷ

(h,s)
0i − µ0i )

2

N0
and SPE

(h,s)
XT

=

∑NT
i=1(ŷ

(h,s)
Ti − µTi )

2

NT
,

- The standard error in the prediction set D0 and in the test set DT :

SE
(h,s)
D0

=

∑N0
i=1

(
ŷ
(h,s)
0i − y0i

)2
N0

and SE
(h,s)
DT

=

∑NT
i=1

(
ŷ
(h,s)
Ti − yTi

)2
NT
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Effect of a different percentage of outliers on predictions

SRS = green Inf.D = red Inf.I = black
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7. Conclusion and future developments

Major features of our approach
our approach may be implemented in a non-informative and
informative setting, according to the available information
it guarantees that the selected samples are the most
informative for estimation (D-optimality) or predictive
purposes (I-optimality) of the model generator of the majority
of the data

Future developments
Extension of the proposed algorithm to the generalized linear
model
Account for model uncertainty in presence of outliers
Comparison with orthogonal and space-filling design
subsampling methods (which are robust wrt misspecification
model) in presence of outliers
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Thank you for your attention
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6. A real data example
The diamonds data set in the ggplot2 package contains the prices and the
specifications for more than 50,000 diamonds. There are 7 factors in this data
set:

1 the carat x1, which is the weight of the diamond, ranges from 0.2 to 5.01

2 the quality x2 of the diamond cut which is coded as one if the quality is better
than “Very Good” and zero otherwise

3 the level of diamond color x3 which is coded as one if the quality is better than
“level F” and zero otherwise

4 a measurement of the diamond clearness x4 wich takes value one if the quality is
better than “SI1” and zero otherwise

5 the total depth percentage x5

6 the width at the widest point x6

7 the volume of the diamond x7

The response variable y is log10 of the price. To avoid multicollinearity x1 has
not been considered (higly correlated with x7).
Moreover the quadratic effect of x7 has been included in the model.

GOAL

the prediction of the price of the diamonds with a volume larger than 200 mm3
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Cross-validation averages for the subsamples of size
n = 100

Prediction set X0 randomly selected from all the diamonds with x7 larger
than 200 mm3.

The remaining dataset has been divided in 4 folds of the same size. In
rotation, one fold represents the test set, while the others form the
training set

In each test set only diamonds with volume larger than 200 mm3 are
considered and the outliers (if present) are removed.

Algorithm MSPEX0 Log(det) SED0 SEDT

non-inf. I 0.0452 65.2964 0.0083 0.0092
non-inf. D 0.0602 69.4402 0.0569 0.0549

inf I 0.0454 65.1758 0.0079 0.0084
inf D 0.0620 65.9726 0.0097 0.0122
SRS 0.0998 60.9025 0.0117 0.0109

N.B. X0 and XT include diamonds with a volume larger than 200 mm3,
Ñ = 2000, tmax = 2000.
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Algorithm 5: Initialization step for Algorithm 2 and 4

Goal: To find out an initial sample s
(0)
n in the bulk of the data.
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Appendix

Algorithm 5 Initialization step for Algorithms 2 and 4

Require: Design matrix X, sample size n, ν2, tmax, Ñ

Ensure: s
(0)
n : initial sample without high leverage points

1: From U select without replacement a simple random sample of size n, r
(0)
n

2: Set t = 0
3: while t < tmax do
4: Compute the leverage scores for the current sample

hii = x⊤
i (X

⊤
t Xt)

−1xi, where i ∈ r
(t)
n

5: Identify unit im = argmax
i∈r

(t)
n

hii

6: if himim < ν2
k+1
n then

7: Set s
(0)
n = r

(t)
n and stop the iterative procedure

8: else
9: Select randomly Ñ units from

{
U − r

(t)
n

}

Let xj , with j = 1, . . . , Ñ , the observations for these units
10: Compute (jX

⊤
t jXt)

−1 from (5), where jXt is the design matrix
obtained from Xt exchanging xim with xj

11: Determine the leverage scores himim(xj) = x⊤
j (jX

⊤
t jXt)

−1xj

12: Identify the set of points candidate for the exchange with im:
C(t) =

{
j : himim(xj) < ν2

k+1
n

}

13: Select at random a unit ja from C(t)

14: Determine r
(t+1)
n by replacing unit im with ja in r

(t)
n

15: Set (X⊤
t+1Xt+1)

−1 = (jaX
⊤
t jaXt)

−1

16: Set t = t+ 1
17: end if
18: end while
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Example (follows): Comparison with Iboss if outliers are
removed after the sample selection (Nout=10)
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Example (follows): Comparison with Iboss if outliers are
removed after the sample selection (Nout=200)
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