Sampling and low-rank approximation

Bertrand Gauthier

Cardiff University - School of Mathematics

MoDA13, July 9th-14th, 2023

Table of contents

- 1. Motivations
- 2. Hilbert-Schmidt operators on RKHSs
- 3. Isometric representation of integral operators
- 4. Measures and projections
- 5. Nonnegative measures and partial L^2 -embeddings
- 6. Error maps
- 7. A quick word about matrices
- 8. Conclusion

Motivations

- $(\mathcal{X}, \mathcal{A})$ a general measurable space.
- μ a general measure on $(\mathcal{X}, \mathcal{A})$.
- $K : \mathcal{X} \times \mathcal{X} \to \mathbb{C}$ a positive-semidefinite (PSD) kernel.

Integral operator defined by K and μ .

$$\mathcal{L}_{K,\mu}[f](x) = \int_{\mathcal{X}} K(x,t) f(t) \mathrm{d}\mu(t),$$

with $f : \mathcal{X} \to \mathbb{C}$ and $x \in \mathcal{X}$.

Remark: This class of operators encompasses the PSD matrices (case $\mathscr{X} = [N]$, and $\mu = \sum_{j=1}^{N} \delta_j$, $N \in \mathbb{N}$). **Notation:** $[N] = \{1, \dots, N\}$. **Problem:** How to design accurate low-rank approximations of operators of the form $\mathcal{L}_{K,\mu}$?

Remark: Rank-optimal approximations correspond to truncated spectral expansions; hence, such approximations can only be implemented for operators/matrices for which an SVD is available beforehand.

Two ways to tackle the problem:

- approximation of the measure μ ;
- approximation of the kernel K.

Notations: Let \mathcal{H} be the RKHS associated with K. For $t \in \mathcal{X}$, let $k_t \in \mathcal{H}$ be defined as $k_t(x) = K(x, t), x \in \mathcal{X}$.

From a sample $\{s_1, \dots, s_m\} \subseteq \mathcal{X}$, $m \in \mathbb{N}$, we may:

• approximate
$$\mu$$
 by $\nu = \sum_{j=1}^{m} v_j \delta_{s_j}$, $v_j \in \mathbb{C}$;

• approximate the kernel K by the reproducing kernel of the subspace $\operatorname{span}_{\mathbb{C}}\{k_{s_1}, \cdots, k_{s_m}\} \subseteq \mathcal{H}.$

New problem: How to design (sparse) samples leading to accurate approximations?

Hilbert-Schmidt operators on RKHSs

- \mathcal{H} , separable RKHS with reproducing kernel K.
- $HS(\mathcal{H})$, Hilbert space of all Hilbert-Schmidt (HS) op. on \mathcal{H} .
- \mathcal{G} , RKHS associated with $|K|^2$ (squared-modulus kernel);

$$|K|^2(x,t) = \left|K(x,t)\right|^2 = K(x,t)\overline{K(x,t)}, x \text{ and } t \in \mathcal{X}.$$

For a, b ∈ H, let T_{a,b} ∈ HS(H) be the rank-1 linear operator given by T_{a,b}[h] = a⟨b | h⟩_H, h ∈ H. Set S_b = T_{b,b}.

Singular value decomposition

An operator $T \in \mathrm{HS}(\mathcal{H})$ always admits a decomposition of the form $T = \sum_{i \in \mathbb{I}} \sigma_i T_{u_i, v_i}$, $\mathbb{I} \subseteq \mathbb{N}$, where $\{\sigma_i\}_{i \in \mathbb{I}} \in \ell^2(\mathbb{I})$ is the set of all strictly-positive singular values of T, and where $\{u_i\}_{i \in \mathbb{I}}$ and $\{v_i\}_{i \in \mathbb{I}}$ are two orthonormal systems in \mathcal{H} .

The map Gamma...

For $T = \sum_{i \in \mathbb{I}} \sigma_i T_{u_i, v_i} \in \mathrm{HS}(\mathcal{H})$, define the \mathbb{C} -valued function

$$\Gamma[T](x) = \sum_{i \in \mathbb{I}} \sigma_i u_i(x) \overline{v_i(x)}, x \in \mathcal{X}.$$

\ldots is a natural coisometry from $HS(\mathcal{H})$ onto $\mathcal G$

The map Γ is a natural coisometry from $\mathrm{HS}(\mathcal{H})$ onto \mathcal{G} , with initial space $\mathcal{I}(\Gamma) = \overline{\mathrm{span}_{\mathbb{C}} \{S_{k_x} | x \in \mathcal{X}\}}^{\mathrm{HS}(\mathcal{H})} \subseteq \mathrm{HS}(\mathcal{H}).$ For all $T \in \mathrm{HS}(\mathcal{H})$ and $x \in \mathcal{X}$, we have

$$\Gamma[T](x) = \langle S_{k_x} | T \rangle_{\mathrm{HS}(\mathcal{H})} = \langle k_x | T[k_x] \rangle_{\mathcal{H}} = T[k_x](x)$$

Through Γ , operators in $\mathcal{I}(\Gamma)$ are isometrically (and bijectively) represented as functions in the RKHS \mathcal{G} .

Remark:

- $\overline{\mathcal{H}}$, the RKHS associated with \overline{K} (conjugate RKHS).
- $\overline{\mathcal{H}}$ is isometric to \mathcal{H}' , the continuous dual of \mathcal{H} .
- $HS(\mathcal{H})$ is isometric to $\mathcal{H} \otimes \overline{\mathcal{H}}$.
- \mathcal{G} is the product of \mathcal{H} and $\overline{\mathcal{H}}$.
- C_{Δ} : $\mathcal{H} \otimes \overline{\mathcal{H}} \to \mathcal{G}$, the pullback along the diagonal.

Basic properties:

- if $T \in HS(\mathcal{H})$ is self-adjoint, then $\Gamma[T]$ is real-valued;
- if $T \in HS(\mathcal{H})$ is PSD, then $\Gamma[T]$ is nonnegative;
- if $T \in HS(\mathcal{H})$ is PSD and $\Gamma[T] = 0$, then T = 0; and
- if $T \in \mathcal{I}(\Gamma)$, then $T^* \in \mathcal{I}(\Gamma)$.

Remark: The map Γ is also well-defined when all the involved Hilbert spaces are real. We in this case have $\mathcal{I}(\Gamma) = \overline{\operatorname{span}_{\mathbb{R}} \{S_{k_x} | x \in \mathcal{X}\}}^{\operatorname{HS}(\mathcal{H})}$, and the operators in $\mathcal{I}(\Gamma)$ are self-adjoint; also, if $T^* = -T$, then $\Gamma[T] = 0$. By comparison, in the complex case, if $T^* = -T$, then the function $\Gamma[T]$ is pure-imaginary.

Isometric representation of integral operators

Measurability conditions

- For all $t \in \mathcal{X}$, $k_t \in \mathcal{H}$ is measurable.
- The diagonal of K is measurable.

For a measure μ on $(\mathcal{X}, \mathcal{A})$, define

$$\tau_{\mu} = \int_{\mathcal{X}} K(t,t) \mathrm{d} |\mu|(t) \in \mathbb{R}_{\geq 0} \cup \{+\infty\};$$

and let $\mathcal{T}_+(K)$, $\mathcal{T}(K)$ and $\mathcal{T}_{\mathbb{C}}(K)$ be the sets of all nonnegative, signed and complex measures such that τ_{μ} is finite. Set $\mathcal{T}_{\mathbb{F}}(K) = \mathcal{T}(K) \cup \mathcal{T}_{\mathbb{C}}(K)$. For $\mu \in \mathcal{T}_{\mathbb{F}}(K)$, set

$$L_{\mu} = \int_{\mathcal{X}} S_{k_t} d\mu(t) \in \mathrm{HS}(\mathcal{H}) \text{ and } g_{\mu} = \int_{\mathcal{X}} |k_t|^2 d\mu(t) \in \mathcal{G};$$

in particular, for $h \in \mathcal{H}$ and $x \in \mathcal{X}$,

$$L_{\mu}[h](x) = \int_{\mathcal{X}} K(x,t)h(t)d\mu(t) \text{ and } g_{\mu}(x) = \int_{\mathcal{X}} \left| K(x,t) \right|^2 d\mu(t);$$

also, L_{μ} is trace-class, with trace $(|L_{\mu}|) \leq \tau_{\mu}$.

Remark: For all $g \in \mathcal{G}$, $\langle g_{\mu} | g \rangle_{\mathcal{G}} = \int_{\mathcal{X}} g(t) d\overline{\mu}(t)$.

Isometric representation

For all $\mu \in \mathcal{T}_{\mathbb{F}}(K)$, we have $L_{\mu} \in \mathcal{I}(\Gamma)$ and $\Gamma[L_{\mu}] = g_{\mu}$.

Proof:
$$\Gamma^*[g_\mu] = L_\mu$$

Generalised integral probability metric (IPM) Set $B_{\mathcal{G}} = \{g \in \mathcal{G} | \|g\|_{\mathcal{G}} \leq 1\}$, and introduce $\mathfrak{M}_{\mathcal{G}}(\mu, \nu) = \sup_{g \in B_{\mathcal{G}}} \left| \int_{\mathcal{X}} g(t) d\mu(t) - \int_{\mathcal{X}} g(t) d\nu(t) \right|, \ \mu \text{ and } \nu \in \mathcal{T}_{\mathbb{F}}(K).$

Quadrature approximation as generalised IPM

$$\|L_{\mu} - L_{\nu}\|_{\mathrm{HS}(\mathcal{H})} = \|g_{\mu} - g_{\nu}\|_{\mathcal{G}} = \mathfrak{M}_{\mathcal{G}}(\mu, \nu).$$

Remark: $\mathfrak{M}_{\mathcal{G}}(\mu, \nu) = \mathfrak{M}_{\mathcal{G}}(\overline{\mu}, \overline{\nu})$ (as $|K|^2$ is \mathbb{R} -valued).

Measures and projections

Projections defined by measures

For $v \in \mathcal{T}_{\mathbb{F}}(K)$, set $\mathcal{H}_{v} = \overline{\operatorname{range}(L_{|v|})}^{\mathcal{H}}$ and let P_{v} be the orthogonal projection from \mathcal{H} onto \mathcal{H}_{v} . Also, let K_{v} be the reproducing kernel of \mathcal{H}_{v} .

Through P_{ν} , and in addition to L_{ν} , a measure $\nu \in \mathcal{T}_{\mathbb{F}}(K)$ also defines the approximations $P_{\nu}L_{\mu}$, $L_{\mu}P_{\nu}$ or $P_{\nu}L_{\mu}P_{\nu}$ of L_{μ} . **Remark:** We have $\overline{\operatorname{range}(L_{\nu})}^{\mathcal{H}} \subseteq \overline{\operatorname{range}(L_{|\nu|})}^{\mathcal{H}}$ and

$$\begin{split} L_{\nu} &= P_{\nu}L_{\nu} = L_{\nu}P_{\nu} = P_{\nu}L_{\nu}P_{\nu}; \text{ also, if } \nu = \sum_{i=1}^{m} v_{i}\delta_{s_{i}}, \text{ with } v_{i} \in \mathbb{C}, \\ v_{i} \neq 0, \text{ then } \mathcal{H}_{\nu} = \operatorname{span}_{\mathbb{C}}\{k_{s_{1}}, \cdots, k_{s_{n}}\}. \end{split}$$

For $h \in \mathcal{H}$ and $x \in \mathcal{X}$, we have

$$P_{\nu}L_{\mu}[h](x) = \int_{\mathcal{X}} K_{\nu}(x,t)h(t)\mathrm{d}\mu(t),$$

so that $P_{\nu}L_{\mu} \in \mathrm{HS}(\mathcal{H})$ can be regarded as an integral operator defined by K_{ν} and μ . The following inequalities hold:

$$\|L_{\boldsymbol{\mu}} - P_{\boldsymbol{\nu}}L_{\boldsymbol{\mu}}\|_{\mathrm{HS}(\mathcal{H})} \leqslant \|L_{\boldsymbol{\mu}} - P_{\boldsymbol{\nu}}L_{\boldsymbol{\mu}}P_{\boldsymbol{\nu}}\|_{\mathrm{HS}(\mathcal{H})} \leqslant \|L_{\boldsymbol{\mu}} - L_{\boldsymbol{\nu}}\|_{\mathrm{HS}(\mathcal{H})}.$$

Remark:

$$\begin{split} \|L_{\mu} - P_{\nu}L_{\mu}\|_{\mathrm{HS}(\mathcal{H})}^{2} &= \iint_{\mathcal{X}} [K(x,t) - K_{\nu}(x,t)]K(t,x)\mathrm{d}\mu(t)\mathrm{d}\overline{\mu}(x); \\ \|L_{\mu} - P_{\nu}L_{\mu}P_{\nu}\|_{\mathrm{HS}(\mathcal{H})}^{2} &= \iint_{\mathcal{X}} |K(x,t)|^{2} - |K_{\nu}(x,t)|^{2}\mathrm{d}\mu(t)\mathrm{d}\overline{\mu}(x). \end{split}$$

Nonnegative measures and partial L^2 -embeddings

For $\mu \in \mathcal{T}_+(K)$, let $L^2(\mu)$ be the Hilbert space of all (\mathbb{C} -valued) square-integrable functions with respect to μ .

From the Cauchy-Schwartz inequality in \mathcal{H} , we have

$$\int_{\mathcal{X}} |h(t)|^2 \mathrm{d}\mu(t) = \int_{\mathcal{X}} \left| \langle k_t | h \rangle_{\mathcal{H}} \right|^2 \mathrm{d}\mu(t) \leq ||h||_{\mathcal{H}}^2 \tau_{\mu}, h \in \mathcal{H}.$$

Embedding of \mathcal{H} in $L^2(\mu)$

For $\mu \in \mathcal{T}_+(K)$, the linear map $\iota_{\mu} : \mathcal{H} \to L^2(\mu)$, with $\iota_{\mu}[h]$ the equiv. class of all meas. fcts μ -a.e. equal to $h \in \mathcal{H}$, is HS. For $f \in L^2(\mu)$ and $x \in \mathcal{X}$, we have

$$\iota_{\mu}^{*}[f](x) = \langle \iota_{\mu}[k_{x}] \mid f \rangle_{L^{2}(\mu)} = \int_{\mathcal{X}} K(x,t) f(t) \mathrm{d}\mu(t),$$

so that ι_{μ}^* : $L^2(\mu) \to \mathcal{H}$ is a natural interpretation of $\mathcal{L}_{K,\mu}$.

Four natural interpretations for $\mathcal{L}_{K,u}$

$$\begin{split} \iota_{\mu}^{*} &\in \mathrm{HS}(\mu, \mathcal{H}), & \iota_{\mu}\iota_{\mu}^{*} \in \mathrm{HS}(\mu), \\ L_{\mu} &= \iota_{\mu}^{*}\iota_{\mu} \in \mathrm{HS}(\mathcal{H}), & \iota_{\mu}\iota_{\mu}^{*}\iota_{\mu} \in \mathrm{HS}(\mathcal{H}, \mu). \end{split}$$

For $v \in \mathcal{T}_{\mathbb{F}}(K)$, ι_{μ} can be approximated by $\iota_{\mu} P_{v}$. For $f \in L^{2}(\mu)$ and $x \in \mathcal{X}$, we have

$$P_{\nu}\iota_{\mu}^{*}[f](x) = \langle \iota_{\mu}P_{\nu}[k_{x}] \mid f \rangle_{L^{2}(\mu)} = \int_{\mathcal{X}} K_{\nu}(x,t)f(t)d\mu(t).$$

Approximations induced by $\iota_{\mu} P_{\nu}$

$$\begin{split} P_{\nu} \iota_{\mu}^{*} &\in \mathrm{HS}(\mu, \mathcal{H}), \qquad \quad \iota_{\mu} P_{\nu} \iota_{\mu}^{*} \in \mathrm{HS}(\mu), \\ P_{\nu} \iota_{\mu}^{*} \iota_{\mu} P_{\nu} &\in \mathrm{HS}(\mathcal{H}), \qquad \quad \iota_{\mu} P_{\nu} \iota_{\mu}^{*} \iota_{\mu} P_{\nu} \in \mathrm{HS}(\mathcal{H}, \mu). \end{split}$$

Remark:

$$\begin{split} \|\iota_{\mu}^{*} - P_{\nu} \iota_{\mu}^{*}\|_{\mathrm{HS}(\mu,\mathcal{H})}^{2} &= \int_{\mathcal{X}} K(t,t) - K_{\nu}(t,t) \mathrm{d}\mu(t); \\ \|\iota_{\mu} \iota_{\mu}^{*} - \iota_{\mu} P_{\nu} \iota_{\mu}^{*}\|_{\mathrm{HS}(\mu)}^{2} &= \iint_{\mathcal{X}} \left| K(x,t) - K_{\nu}(x,t) \right|^{2} \mathrm{d}\mu(t) \mathrm{d}\mu(x). \end{split}$$

We also have $\|\iota_{\mu}\iota_{\mu}^{*} - \iota_{\mu}P_{\nu}\iota_{\mu}^{*}\|_{\mathrm{HS}(\mu)} \leq \|\iota_{\mu}^{*}\iota_{\mu} - P_{\nu}\iota_{\mu}^{*}\iota_{\mu}\|_{\mathrm{HS}(\mathcal{H})}.$

• For $\mu \in \mathcal{T}_{\mathbb{F}}(K)$:

$$\begin{split} D_{\boldsymbol{\mu}}(\boldsymbol{\nu}) &= \|L_{\boldsymbol{\mu}} - L_{\boldsymbol{\nu}}\|_{\mathrm{HS}(\mathcal{H})}^{2}, \quad C_{\boldsymbol{\mu}}^{\mathrm{P}}(\boldsymbol{\nu}) = \|L_{\boldsymbol{\mu}} - P_{\boldsymbol{\nu}}L_{\boldsymbol{\mu}}\|_{\mathrm{HS}(\mathcal{H})}^{2} \text{ and } \\ C_{\boldsymbol{\mu}}^{\mathrm{PP}}(\boldsymbol{\nu}) &= \|L_{\boldsymbol{\mu}} - P_{\boldsymbol{\nu}}L_{\boldsymbol{\mu}}P_{\boldsymbol{\nu}}\|_{\mathrm{HS}(\mathcal{H})}^{2}, \boldsymbol{\nu} \in \mathcal{T}_{\mathbb{F}}(K). \end{split}$$

• For $\mu \in \mathcal{T}_+(K)$:

 $C^{\rm tr}_{\mu}(\nu) = \| \iota^*_{\mu} - P_{\nu}\iota^*_{\mu} \|^2_{{\rm HS}(\mu,\mathcal{H})} \quad \text{and} \quad C^{\rm F}_{\mu}(\nu) = \| \iota_{\mu}\iota^*_{\mu} - \iota_{\mu}P_{\nu}\iota^*_{\mu} \|^2_{{\rm HS}(\mu)}.$

• Bonus: Introduction of an invariance under rescaling in D_{μ} ; $R_{\mu}(\nu) = \min_{c \ge 0} D_{\mu}(c\nu)$ $= \begin{cases} \|g_{\mu}\|_{\mathcal{G}}^{2} - \Re(\langle g_{\mu} | g_{\nu} \rangle_{\mathcal{G}})^{2} / \|g_{\nu}\|^{2} \text{ if } \Re(\langle g_{\mu} | g_{\nu} \rangle_{\mathcal{G}}) > 0, \\ \|g_{\mu}\|_{\mathcal{G}}^{2} \text{ otherwise.} \end{cases}$

Figure 1: Representation of the maps D_{μ} , R_{μ} and C_{μ}^{PP} on $\mathcal{T}_{+}(K)$; the considered measures are of the form $v = v_1 \delta_{x_1} + v_2 \delta_{x_2}$.

Remark: For all $v \in \mathcal{T}_{\mathbb{F}}(K)$, we have:

 $C^{\mathrm{F}}_{\mu}(\nu) \leqslant C^{\mathrm{P}}_{\mu}(\nu) \leqslant C^{\mathrm{PP}}_{\mu}(\nu) \leqslant R_{\mu}(\nu) \leqslant D_{\mu}(\nu).$

A quick word about matrices

Consider a PSD matrix $\mathbf{K} \in \mathbb{C}^{N \times N}$, $N \in \mathbb{N}$.

- Let \mathcal{E} be the Euclidean space \mathbb{C}^N .
- Consider the measure $\mu = \sum_{j=1}^{N} \delta_j$ on $\mathscr{X} = [N]$; then $L^2(\mu)$ can be identified with \mathscr{E} .
- The entries of ${\bf K}$ are the values of the kernel of a RKHS of ${\mathbb C}\text{-valued functions on }[N].$
- This RKHS can be identified with $\mathcal{H} = \operatorname{span}_{\mathbb{C}} \{ \mathbf{K} \} \subseteq \mathbb{C}^N$, with $\langle \mathbf{h} | \mathbf{f} \rangle_{\mathcal{H}} = \mathbf{h}^* \mathbf{K}^{\dagger} \mathbf{f}$, \mathbf{h} and $\mathbf{f} \in \mathcal{H}$.
- The support I ⊆ [N] of a measure v on [N] defines a sample of columns of K.
- Set *H_I* = span_C{**K**_{•,I}}, and denote by *P_I* the orthogonal projection from *H* onto *H_I*.
- We have $P_I \mathbf{K} = \mathbf{K}_{\bullet,I}(\mathbf{K}_{I,I})^{\dagger} \mathbf{K}_{I,\bullet} = \hat{\mathbf{K}}(I)$, the low-rank approximation of \mathbf{K} induced by the sample of columns $\mathbf{K}_{\bullet,I}$.

Conclusion

- Equivalence between the quadrature approximation of trace-class integral operators with PSD kernels and the approximation of integral functionals on RKHSs with squared-modulus kernels.
- (In combination with sparsity-inducing mechanisms), quadrature approximation may be used as a differentiable and numerically efficient surrogate for the characterisation of projection-based approximations.

Thank you

 Bertrand Gauthier and Johan Suykens. "Optimal quadrature-sparsification for integral operator approximation". In: SIAM Journal on Scientific Computing (2018)

Atthew Hutchings and Bertrand Gauthier. "Local optimisation of Nyström samples through stochastic gradient descent". In: *Machine Learning, Optimization, and Data Science - LOD 2022.* 2023

Matthew Hutchings and Bertrand Gauthier. "Energy-based sequential sampling for low-rank PSD-matrix approximation". In: *Preprint* (2023)

♦ Bertrand Gauthier. "Isometric representation of integral operators with positive-semidefinite kernels". In: *Technical report* (2023)

♦ Bertrand Gauthier. "Kernel embedding of measures and low-rank approximation of integral operators". In: In preparation (2023)