Sampling and low-rank approximation

Bertrand Gauthier
Cardiff University - School of Mathematics
MoDA13, July 9th-14th, 2023

Table of contents

1. Motivations
2. Hilbert-Schmidt operators on RKHSs
3. Isometric representation of integral operators
4. Measures and projections
5. Nonnegative measures and partial L^{2}-embeddings
6. Error maps
7. A quick word about matrices
8. Conclusion

Motivations

- $(\mathscr{X}, \mathcal{A})$ a general measurable space.
- μ a general measure on $(\mathscr{X}, \mathcal{A})$.
- $K: \mathscr{X} \times \mathscr{X} \rightarrow \mathbb{C}$ a positive-semidefinite (PSD) kernel.

Integral operator defined by K and μ.

$$
\mathcal{L}_{K, \mu}[f](x)=\int_{\mathscr{X}} K(x, t) f(t) \mathrm{d} \mu(t)
$$

with $f: X \rightarrow \mathbb{C}$ and $x \in X$.

Remark: This class of operators encompasses the PSD matrices (case $\mathscr{X}=[N]$, and $\mu=\sum_{j=1}^{N} \delta_{j}, N \in \mathbb{N}$).
Notation: $[N]=\{1, \cdots, N\}$.

Problem: How to design accurate low-rank approximations of operators of the form $\mathcal{L}_{K, \mu}$?
Remark: Rank-optimal approximations correspond to truncated spectral expansions; hence, such approximations can only be implemented for operators/matrices for which an SVD is available beforehand.

Two ways to tackle the problem:

- approximation of the measure μ;
- approximation of the kernel K.

Sampling-based approximations

Notations: Let \mathcal{H} be the RKHS associated with K.
For $t \in \mathcal{X}$, let $k_{t} \in \mathcal{H}$ be defined as $k_{t}(x)=K(x, t), x \in \mathscr{X}$.
From a sample $\left\{s_{1}, \cdots, s_{m}\right\} \subseteq \mathscr{X}, m \in \mathbb{N}$, we may:

- approximate μ by $\nu=\sum_{j=1}^{m} v_{j} \delta_{s_{j}}, v_{j} \in \mathbb{C}$;
- approximate the kernel K by the reproducing kernel of the subspace $\operatorname{span}_{\mathbb{C}}\left\{k_{s_{1}}, \cdots, k_{s_{m}}\right\} \subseteq \mathcal{H}$.

New problem: How to design (sparse) samples leading to accurate approximations?

Hilbert-Schmidt operators on RKHSs

- \mathcal{H}, separable RKHS with reproducing kernel K.
- HS($\mathcal{H})$, Hilbert space of all Hilbert-Schmidt (HS) op. on \mathcal{H}.
- \mathcal{G}, RKHS associated with $|K|^{2}$ (squared-modulus kernel);

$$
|K|^{2}(x, t)=|K(x, t)|^{2}=K(x, t) \overline{K(x, t)}, x \text { and } t \in \mathscr{X} .
$$

- For $a, b \in \mathcal{H}$, let $T_{a, b} \in \operatorname{HS}(\mathcal{H})$ be the rank-1 linear operator given by $T_{a, b}[h]=a\langle b \mid h\rangle_{\mathcal{H}}, h \in \mathcal{H}$. Set $S_{b}=T_{b, b}$.

Singular value decomposition

An operator $T \in \operatorname{HS}(\mathcal{H})$ always admits a decomposition of the form $T=\sum_{i \in \mathbb{1}} \sigma_{i} T_{u_{i}, v_{i}}, \square \subseteq \mathbb{N}$, where $\left\{\sigma_{i}\right\}_{i \in \cap} \in \ell^{2}(\mathbb{\square})$ is the set of all strictly-positive singular values of T, and where $\left\{u_{i}\right\}_{i \in \mathrm{I}}$ and $\left\{v_{i}\right\}_{i \in \mathrm{I}}$ are two orthonormal systems in \mathcal{H}.

The map Gamma.

For $T=\sum_{i \in \emptyset} \sigma_{i} T_{u_{i}, v_{i}} \in \operatorname{HS}(\mathcal{H})$, define the \mathbb{C}-valued function

$$
\Gamma[T](x)=\sum_{i \in \mathbb{I}} \sigma_{i} u_{i}(x) \overline{v_{i}(x)}, x \in \mathscr{X} .
$$

is a natural coisometry from $\operatorname{HS}(\mathcal{H})$ onto \mathcal{C}

The map Γ is a natural coisometry from $\operatorname{HS}(\mathcal{H})$ onto \mathcal{G}, with initial space $\mathcal{I}(\Gamma)=\overline{\operatorname{span}}_{\mathbb{C}}\left\{S_{k_{x}} \mid x \in \mathscr{X}\right\} \quad(\mathcal{H}) \subseteq \operatorname{HS}(\mathcal{H})$.
For all $T \in \operatorname{HS}(\mathcal{H})$ and $x \in \mathscr{X}$, we have

$$
\Gamma[T](x)=\left\langle S_{k_{x}} \mid T\right\rangle_{\mathrm{HS}(\mathcal{H})}=\left\langle k_{x} \mid T\left[k_{x}\right]\right\rangle_{\mathcal{H}}=T\left[k_{x}\right](x) .
$$

Through Γ, operators in $\mathcal{I}(\Gamma)$ are isometrically (and bijectively) represented as functions in the RKHS \mathcal{C}.

Remark:

- $\overline{\mathcal{H}}$, the RKHS associated with \bar{K} (conjugate RKHS).
- $\overline{\mathcal{H}}$ is isometric to \mathcal{H}^{\prime}, the continuous dual of \mathcal{H}.
- $\mathrm{HS}(\mathcal{H})$ is isometric to $\mathcal{H} \otimes \overline{\mathcal{H}}$.
- \mathcal{G} is the product of \mathcal{H} and $\overline{\mathcal{H}}$.
- $C_{\Delta}: \mathcal{H} \otimes \overline{\mathcal{H}} \rightarrow \mathcal{G}$, the pullback along the diagonal.

Basic properties:

- if $T \in \operatorname{HS}(\mathcal{H})$ is self-adjoint, then $\Gamma[T]$ is real-valued;
- if $T \in \operatorname{HS}(\mathcal{H})$ is PSD, then $\Gamma[T]$ is nonnegative;
- if $T \in \operatorname{HS}(\mathcal{H})$ is PSD and $\Gamma[T]=0$, then $T=0$; and
- if $T \in \mathcal{I}(\Gamma)$, then $T^{*} \in \mathcal{I}(\Gamma)$.

Remark: The map Γ is also well-defined when all the involved Hilbert spaces are real. We in this case have $\mathcal{I}(\Gamma)={\overline{\operatorname{span}} \mathbb{R}\left\{S_{k_{x}} \mid x \in \mathscr{X}\right\}}{ }^{\mathrm{HS}(\mathcal{H})}$, and the operators in $\mathcal{I}(\Gamma)$ are self-adjoint; also, if $T^{*}=-T$, then $\Gamma[T]=0$. By comparison, in the complex case, if $T^{*}=-T$, then the function $\Gamma[T]$ is pure-imaginary.

Isometric representation of integral operators

Measurability conditions

- For all $t \in \mathcal{X}, k_{t} \in \mathcal{H}$ is measurable.
- The diagonal of K is measurable.

For a measure μ on $(\mathscr{X}, \mathcal{A})$, define

$$
\tau_{\mu}=\int_{\mathscr{X}} K(t, t) \mathrm{d}|\mu|(t) \in \mathbb{R}_{\geqslant 0} \cup\{+\infty\}
$$

and let $\mathcal{T}_{+}(K), \mathcal{T}(K)$ and $\mathcal{T}_{\widetilde{C}}(K)$ be the sets of all nonnegative, signed and complex measures such that τ_{μ} is finite.
Set $\mathcal{T}_{\mathbb{F}}(K)=\mathcal{T}(K) \cup \mathcal{T}_{\mathbb{C}}(K)$.

For $\mu \in \mathcal{J}_{\mathbb{F}}(K)$, set

$$
L_{\mu}=\int_{\mathscr{X}} S_{k_{t}} \mathrm{~d} \mu(t) \in \mathrm{HS}(\mathcal{H}) \quad \text { and } \quad g_{\mu}=\int_{\mathscr{X}}\left|k_{t}\right|^{2} \mathrm{~d} \mu(t) \in \mathcal{C}
$$

in particular, for $h \in \mathcal{H}$ and $x \in \mathscr{X}$,

$$
L_{\mu}[h](x)=\int_{X} K(x, t) h(t) \mathrm{d} \mu(t) \text { and } g_{\mu}(x)=\int_{\mathscr{X}}|K(x, t)|^{2} \mathrm{~d} \mu(t)
$$

also, L_{μ} is trace-class, with $\operatorname{trace}\left(\left|L_{\mu}\right|\right) \leqslant \tau_{\mu}$.
Remark: For all $g \in \mathcal{G},\left\langle g_{\mu} \mid g\right\rangle_{\mathcal{G}}=\int_{\mathscr{X}} g(t) \mathrm{d} \bar{\mu}(t)$.
Isometric representation
For all $\mu \in \mathcal{T}_{\mathbb{F}}(K)$, we have $L_{\mu} \in \mathcal{I}(\Gamma)$ and $\Gamma\left[L_{\mu}\right]=g_{\mu}$.
Proof: $\Gamma^{*}\left[g_{\mu}\right]=L_{\mu}$. \square

Generalised integral probability metric (IPM)

Set $B_{\mathcal{G}}=\left\{g \in \mathcal{G} \mid\|g\|_{\mathcal{G}} \leqslant 1\right\}$, and introduce

$$
\mathfrak{M}_{G}(\mu, \nu)=\sup _{g \in \mathcal{B}_{G}}\left|\int_{X} g(t) \mathrm{d} \mu(t)-\int_{X} g(t) \mathrm{d} v(t)\right|, \mu \text { and } v \in \mathcal{T}_{\mathbb{F}}(K) .
$$

Quadrature approximation as generalised IPM

$$
\left\|L_{\mu}-L_{v}\right\|_{\mathrm{HS}(\mathcal{H})}=\left\|g_{\mu}-g_{v}\right\|_{\mathcal{G}}=\mathfrak{M}_{\mathcal{G}}(\mu, \nu) .
$$

Remark: $\mathfrak{M}_{G}(\mu, v)=\mathfrak{M}_{G}(\bar{\mu}, \bar{v})$ (as $|K|^{2}$ is \mathbb{R}-valued).

Measures and projections

Projections defined by measures

For $v \in \mathcal{T}_{\mathbb{F}}(K)$, set $\mathcal{H}_{v}=\overline{\operatorname{range}\left(L_{|\nu|}\right)}{ }^{\mathcal{H}}$ and let P_{v} be the orthogonal projection from \mathcal{H} onto \mathcal{H}_{v}. Also, let K_{v} be the reproducing kernel of \mathcal{H}_{v}.

Through P_{v}, and in addition to L_{v}, a measure $v \in \mathcal{T}_{\mathbb{F}}(K)$ also defines the approximations $P_{\nu} L_{\mu}, L_{\mu} P_{\nu}$ or $P_{\nu} L_{\mu} P_{\nu}$ of L_{μ}.
Remark: We have ${\overline{\operatorname{range}\left(L_{v}\right)}}^{\mathcal{H}} \subseteq{\overline{\operatorname{range}\left(L_{|| |}\right)}}^{\mathcal{H}}$ and $L_{v}=P_{v} L_{v}=L_{v} P_{v}=P_{v} L_{v} P_{v}$; also, if $v=\sum_{i=1}^{m} v_{i} \delta_{s_{i}}$, with $v_{i} \in \mathbb{C}$, $v_{i} \neq 0$, then $\mathcal{H}_{v}=\operatorname{span}_{\mathbb{C}}\left\{k_{s_{1}}, \cdots, k_{s_{n}}\right\}$.

For $h \in \mathcal{H}$ and $x \in \mathscr{X}$, we have

$$
P_{\nu} L_{\mu}[h](x)=\int_{x} K_{\imath}(x, t) h(t) \mathrm{d} \mu(t),
$$

so that $P_{\nu} L_{\mu} \in \operatorname{HS}(\mathcal{H})$ can be regarded as an integral operator defined by K_{ν} and μ. The following inequalities hold:

$$
\left\|L_{\mu}-P_{\nu} L_{\mu}\right\|_{\mathrm{HS}(\mathcal{H})} \leqslant\left\|L_{\mu}-P_{\nu} L_{\mu} P_{\nu}\right\|_{\mathrm{HS}(\mathcal{H})} \leqslant\left\|L_{\mu}-L_{\nu}\right\|_{\mathrm{HS}(\mathcal{H})} .
$$

Remark:

$$
\begin{aligned}
& \left\|L_{\mu}-P_{\nu} L_{\mu}\right\|_{\mathrm{HS}(\mathcal{H})}^{2}=\iint_{X}\left[K(x, t)-K_{\nu}(x, t)\right] K(t, x) \mathrm{d} \mu(t) \mathrm{d} \bar{\mu}(x) ; \\
& \left\|L_{\mu}-P_{\nu} L_{\mu} P_{\nu}\right\|_{\mathrm{HS}(H)}^{2}=\iint_{X}|K(x, t)|^{2}-\left|K_{\nu}(x, t)\right|^{2} \mathrm{~d} \mu(t) \mathrm{d} \bar{\mu}(x) .
\end{aligned}
$$

Nonnegative measures and partial L^{2}-embeddings

For $\mu \in \mathcal{T}_{+}(K)$, let $L^{2}(\mu)$ be the Hilbert space of all (\mathbb{C}-valued) square-integrable functions with respect to μ.

From the Cauchy-Schwartz inequality in \mathcal{H}, we have

$$
\int_{\mathscr{X}}|h(t)|^{2} \mathrm{~d} \mu(t)=\int_{\mathscr{X}}\left|\left\langle k_{t} \mid h\right\rangle_{\mathcal{H}}\right|^{2} \mathrm{~d} \mu(t) \leqslant\|h\|_{\mathcal{H}}^{2} \tau_{\mu}, h \in \mathcal{H} .
$$

Embedding of \mathcal{H} in $L^{2}(\mu)$

For $\mu \in \mathcal{T}_{+}(K)$, the linear map $t_{\mu}: \mathcal{H} \rightarrow L^{2}(\mu)$, with $l_{\mu}[h]$ the equiv. class of all meas. fcts μ-a.e. equal to $h \in \mathcal{H}$, is HS.
For $f \in L^{2}(\mu)$ and $x \in \mathcal{X}$, we have

$$
i_{\mu}^{*}[f](x)=\left\langle l_{\mu}\left[k_{x}\right] \mid f\right\rangle_{L^{2}(\mu)}=\int_{X} K(x, t) f(t) \mathrm{d} \mu(t),
$$

so that $l_{\mu}^{*}: L^{2}(\mu) \rightarrow \mathcal{H}$ is a natural interpretation of $\mathcal{L}_{K, \mu}$.
Four natural interpretations for $\mathcal{L}_{K, \mu}$

$$
\begin{array}{ll}
l_{\mu}^{*} \in \operatorname{HS}(\mu, \mathcal{H}), & l_{\mu} l_{\mu}^{*} \in \operatorname{HS}(\mu), \\
L_{\mu}=l_{\mu}^{*} l_{\mu} \in \operatorname{HS}(\mathcal{H}), & l_{\mu} l_{\mu}{ }_{\mu}^{*} l_{\mu} \in \operatorname{HS}(\mathcal{H}, \mu) .
\end{array}
$$

For $\nu \in \mathcal{T}_{\mathbb{F}}(K), l_{\mu}$ can be approximated by $l_{\mu} P_{\nu}$.
For $f \in L^{2}(\mu)$ and $x \in \mathscr{X}$, we have

$$
P_{\imath} \psi_{\mu}^{*}[f](x)=\left\langle t_{\mu} P_{\downarrow}\left[k_{x}\right] \mid f\right\rangle_{L^{2}(\mu)}=\int_{X} K_{\downarrow}(x, t) f(t) \mathrm{d} \mu(t) .
$$

Approximations induced by ${ }_{\mu} P_{V}$

$$
\begin{aligned}
& P_{\nu} \nu_{\mu}^{*} \in \operatorname{HS}(\mu, \mathcal{H}) \text {, } \\
& { }_{l_{\mu}} P_{\nu} l_{\mu}^{*} \in \mathrm{HS}(\mu), \\
& P_{\nu}{ }_{\nu}^{l_{\mu}{ }^{\prime}{ }_{\mu} P_{v} \in \operatorname{HS}(\mathcal{H}), ~} \\
& { }_{l_{\mu}} P_{\nu}{ }_{\nu}{ }_{\mu}^{*}{ }_{\mu} P_{\nu} \in \operatorname{HS}(\mathcal{H}, \mu) .
\end{aligned}
$$

Remark:

$$
\begin{aligned}
& \left\|l_{\mu}^{*}-P_{\nu} v_{\mu}^{*}\right\|_{\mathrm{HS}(\mu, \mathcal{H})}^{2}=\int_{X} K(t, t)-K_{\nu}(t, t) \mathrm{d} \mu(t) ; \\
& \left\|l_{\mu} \iota_{\mu}^{*}-l_{\mu} P_{\nu} l_{\mu}^{*}\right\|_{\mathrm{HS}(\mu)}^{2}=\iint_{X}\left|K(x, t)-K_{\nu}(x, t)\right|^{2} \mathrm{~d} \mu(t) \mathrm{d} \mu(x) .
\end{aligned}
$$

We also have $\left\|l_{\mu} l_{\mu}^{*}-l_{\mu} P_{\nu} l_{\mu}^{*}\right\|_{\mathrm{HS}(\mu)} \leqslant \| l_{\mu}^{*} l_{\mu}-P_{v_{\mu} l_{\mu}^{*} l_{\mu} \|_{\mathrm{HS}(\gamma)} .}$.

Error maps

- For $\mu \in \mathcal{T}_{\mathbb{F}}(K)$:

$$
\begin{gathered}
D_{\mu}(\nu)=\left\|L_{\mu}-L_{\nu}\right\|_{\mathrm{HS}(\mathcal{H})}^{2}, \quad C_{\mu}^{\mathrm{P}}(\nu)=\left\|L_{\mu}-P_{\nu} L_{\mu}\right\|_{\mathrm{HS}(\mathcal{H})}^{2} \text { and } \\
C_{\mu}^{\mathrm{PP}}(\nu)=\left\|L_{\mu}-P_{v} L_{\mu} P_{\nu}\right\|_{\mathrm{HS}(\mathcal{H})}^{2}, \nu \in \mathcal{T}_{\mathbb{F}}(K) .
\end{gathered}
$$

- For $\mu \in \mathcal{T}_{+}(K)$:

$$
C_{\mu}^{\mathrm{Tr}}(\nu)=\left\|l_{\mu}^{*}-P_{\nu} \nu_{\mu}^{*}\right\|_{\mathrm{HS}(\mu, \mathcal{H})}^{2} \quad \text { and } \quad C_{\mu}^{\mathrm{F}}(\nu)=\| \|_{\mu} l_{\mu}^{*}-l_{\mu} P_{\nu} v_{\mu}^{*} \|_{\mathrm{HS}(\mu)}^{2} \text {. }
$$

- Bonus: Introduction of an invariance under rescaling in D_{μ};

$$
\begin{aligned}
R_{\mu}(\nu) & =\min _{c \geqslant 0} D_{\mu}(c v) \\
& =\left\{\begin{array}{l}
\left\|g_{\mu}\right\|_{\mathcal{G}}^{2}-\Re\left(\left\langle g_{\mu} \mid g_{\nu}\right\rangle_{\mathcal{G}}\right)^{2} /\left\|g_{\nu}\right\|^{2} \text { if } \mathfrak{R}\left(\left\langle g_{\mu} \mid g_{\nu}\right\rangle_{G}\right)>0, \\
\left\|g_{\mu}\right\|_{\mathcal{G}}^{2} \text { otherwise. }
\end{array}\right.
\end{aligned}
$$

Figure 1: Representation of the maps D_{μ}, R_{μ} and C_{μ}^{PP} on $\mathcal{J}_{+}(K)$; the considered measures are of the form $v=v_{1} \delta_{x_{1}}+v_{2} \delta_{x_{2}}$.

Remark: For all $v \in \mathcal{T}_{\mathbb{F}}(K)$, we have:

$$
C_{\mu}^{\mathrm{F}}(\nu) \leqslant C_{\mu}^{\mathrm{P}}(v) \leqslant C_{\mu}^{\mathrm{PP}}(v) \leqslant R_{\mu}(v) \leqslant D_{\mu}(v) .
$$

A quick word about matrices

Consider a PSD matrix $\mathbf{K} \in \mathbb{C}^{N \times N}, N \in \mathbb{N}$.

- Let \mathcal{E} be the Euclidean space \mathbb{C}^{N}.
- Consider the measure $\mu=\sum_{j=1}^{N} \delta_{j}$ on $\mathscr{X}=[N]$; then $L^{2}(\mu)$ can be identified with \mathcal{E}.
- The entries of \mathbf{K} are the values of the kernel of a RKHS of \mathbb{C}-valued functions on $[N]$.
- This RKHS can be identified with $\mathcal{H}=\operatorname{span}_{\mathbb{C}}\{\mathbf{K}\} \subseteq \mathbb{C}^{N}$, with $\langle\boldsymbol{h} \mid \boldsymbol{f}\rangle_{\mathcal{H}}=\boldsymbol{h}^{*} \mathbf{K}^{\dagger} \boldsymbol{f}, \boldsymbol{h}$ and $\boldsymbol{f} \in \mathcal{H}$.
- The support $I \subseteq[N]$ of a measure v on $[N]$ defines a sample of columns of \mathbf{K}.
- Set $\mathcal{H}_{I}=\operatorname{span}_{\mathbb{C}}\left\{\mathbf{K}_{, I}\right\}$, and denote by P_{I} the orthogonal projection from \mathcal{H} onto \mathcal{H}_{I}.
- We have $P_{I} \mathbf{K}=\mathbf{K}_{, I}\left(\mathbf{K}_{I, I}\right)^{\dagger} \mathbf{K}_{I,}=\hat{\mathbf{K}}(I)$, the low-rank approximation of \mathbf{K} induced by the sample of columns $\mathbf{K}_{\cdot, I}$.

Conclusion

- Equivalence between the quadrature approximation of trace-class integral operators with PSD kernels and the approximation of integral functionals on RKHSs with squared-modulus kernels.
- (In combination with sparsity-inducing mechanisms), quadrature approximation may be used as a differentiable and numerically efficient surrogate for the characterisation of projection-based approximations.

Thank you

\diamond Bertrand Gauthier and Johan Suykens. "Optimal quadrature-sparsification for integral operator approximation". In: SIAM Journal on Scientific Computing (2018)
\diamond Matthew Hutchings and Bertrand Gauthier. "Local optimisation of Nyström samples through stochastic gradient descent". In: Machine Learning, Optimization, and Data Science - LOD 2022. 2023
\diamond Matthew Hutchings and Bertrand Gauthier. "Energy-based sequential sampling for low-rank PSD-matrix approximation". In: Preprint (2023)
\diamond Bertrand Gauthier. "Isometric representation of integral operators with positive-semidefinite kernels". In: Technical report (2023)
\diamond Bertrand Gauthier. "Kernel embedding of measures and low-rank approximation of integral operators". In: In preparation (2023)

