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Motivations



• (𝒳 ,) a general measurable space.

• 𝜇 a general measure on (𝒳 ,).
• 𝐾 ∶ 𝒳 ×𝒳 → ℂ a positive-semidefinite (PSD) kernel.

Integral operator defined by 𝐾 and 𝜇.

𝐾,𝜇[𝑓 ](𝑥) = ∫𝒳
𝐾(𝑥, 𝑡)𝑓 (𝑡)d𝜇(𝑡),

with 𝑓 ∶ 𝒳 → ℂ and 𝑥 ∈ 𝒳 .

Remark: This class of operators encompasses the PSD matrices
(case 𝒳 = [𝑁], and 𝜇 =

∑𝑁
𝑗=1 𝛿𝑗 , 𝑁 ∈ ℕ).

Notation: [𝑁] = {1,⋯ , 𝑁}.
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Problem: How to design accurate low-rank approximations of
operators of the form 𝐾,𝜇?

Remark: Rank-optimal approximations correspond to truncated
spectral expansions; hence, such approximations can only be
implemented for operators/matrices for which an SVD is available
beforehand.

Two ways to tackle the problem:

• approximation of the measure 𝜇;

• approximation of the kernel 𝐾.
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Sampling-based approximations

Notations: Let  be the RKHS associated with 𝐾.
For 𝑡 ∈ 𝒳 , let 𝑘𝑡 ∈  be defined as 𝑘𝑡(𝑥) = 𝐾(𝑥, 𝑡), 𝑥 ∈ 𝒳 .

From a sample {𝑠1,⋯ , 𝑠𝑚} ⊆ 𝒳 , 𝑚 ∈ ℕ, we may:

• approximate 𝜇 by 𝜈 =
∑𝑚

𝑗=1 𝜐𝑗𝛿𝑠𝑗 , 𝜐𝑗 ∈ ℂ;

• approximate the kernel 𝐾 by the reproducing kernel of the
subspace spanℂ{𝑘𝑠1 ,⋯ , 𝑘𝑠𝑚} ⊆ .

New problem: How to design (sparse) samples leading to
accurate approximations?
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Hilbert-Schmidt operators on
RKHSs



• , separable RKHS with reproducing kernel 𝐾.

• HS(), Hilbert space of all Hilbert-Schmidt (HS) op. on .

• , RKHS associated with |𝐾|

2 (squared-modulus kernel);

|𝐾|

2(𝑥, 𝑡) = |

|

𝐾(𝑥, 𝑡)|
|

2 = 𝐾(𝑥, 𝑡)𝐾(𝑥, 𝑡), 𝑥 and 𝑡 ∈ 𝒳 .

• For 𝑎, 𝑏 ∈ , let 𝑇𝑎,𝑏 ∈ HS() be the rank-1 linear operator
given by 𝑇𝑎,𝑏[ℎ] = 𝑎⟨𝑏 |ℎ⟩, ℎ ∈ . Set 𝑆𝑏 = 𝑇𝑏,𝑏.
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Singular value decomposition
An operator 𝑇 ∈ HS() always admits a decomposition of the
form 𝑇 =

∑

𝑖∈𝕀 𝜎𝑖𝑇𝑢𝑖,𝑣𝑖 , 𝕀 ⊆ ℕ, where {𝜎𝑖}𝑖∈𝕀 ∈ 𝓁2(𝕀) is the set of all
strictly-positive singular values of 𝑇 , and where {𝑢𝑖}𝑖∈𝕀 and {𝑣𝑖}𝑖∈𝕀
are two orthonormal systems in .

The map Gamma. . .

For 𝑇 =
∑

𝑖∈𝕀 𝜎𝑖𝑇𝑢𝑖,𝑣𝑖 ∈ HS(), define the ℂ-valued function

Γ[𝑇 ](𝑥) =
∑

𝑖∈𝕀
𝜎𝑖𝑢𝑖(𝑥)𝑣𝑖(𝑥), 𝑥 ∈ 𝒳 .
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. . . is a natural coisometry from HS() onto 
The map Γ is a natural coisometry from HS() onto , with
initial space (Γ) = spanℂ{𝑆𝑘𝑥|𝑥 ∈ 𝒳}

HS()
⊆ HS().

For all 𝑇 ∈ HS() and 𝑥 ∈ 𝒳 , we have

Γ[𝑇 ](𝑥) = ⟨𝑆𝑘𝑥 | 𝑇 ⟩HS() = ⟨𝑘𝑥 | 𝑇 [𝑘𝑥]⟩ = 𝑇 [𝑘𝑥](𝑥).

Through Γ, operators in (Γ) are isometrically (and bijectively)
represented as functions in the RKHS .
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Remark:

• , the RKHS associated with 𝐾 (conjugate RKHS).

•  is isometric to ′, the continuous dual of .

• HS() is isometric to  ⊗.

•  is the product of  and .

• 𝐶Δ ∶  ⊗ → , the pullback along the diagonal.

HS() Γ //

Ψ
%%



 ⊗′
≅
//

��
≅

 ⊗
𝐶Δ

<<
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Basic properties:

• if 𝑇 ∈ HS() is self-adjoint, then Γ[𝑇 ] is real-valued;

• if 𝑇 ∈ HS() is PSD, then Γ[𝑇 ] is nonnegative;

• if 𝑇 ∈ HS() is PSD and Γ[𝑇 ] = 0, then 𝑇 = 0; and

• if 𝑇 ∈ (Γ), then 𝑇 ∗ ∈ (Γ).

Remark: The map Γ is also well-defined when all the involved
Hilbert spaces are real. We in this case have
(Γ) = spanℝ{𝑆𝑘𝑥|𝑥 ∈ 𝒳}

HS()
, and the operators in (Γ) are

self-adjoint; also, if 𝑇 ∗ = −𝑇 , then Γ[𝑇 ] = 0. By comparison, in the
complex case, if 𝑇 ∗ = −𝑇 , then the function Γ[𝑇 ] is pure-imaginary.
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Isometric representation of
integral operators



Measurability conditions

• For all 𝑡 ∈ 𝒳 , 𝑘𝑡 ∈  is measurable.

• The diagonal of 𝐾 is measurable.

For a measure 𝜇 on (𝒳 ,), define

𝜏𝜇 = ∫𝒳
𝐾(𝑡, 𝑡)d|𝜇|(𝑡) ∈ ℝ⩾0 ∪ {+∞};

and let +(𝐾),  (𝐾) and ℂ(𝐾) be the sets of all nonnegative,
signed and complex measures such that 𝜏𝜇 is finite.
Set 𝔽 (𝐾) =  (𝐾) ∪ ℂ(𝐾).
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For 𝜇 ∈ 𝔽 (𝐾), set

𝐿𝜇 = ∫𝒳
𝑆𝑘𝑡d𝜇(𝑡) ∈ HS() and 𝑔𝜇 = ∫𝒳

|𝑘𝑡|
2d𝜇(𝑡) ∈ ;

in particular, for ℎ ∈  and 𝑥 ∈ 𝒳 ,

𝐿𝜇[ℎ](𝑥) = ∫𝒳
𝐾(𝑥, 𝑡)ℎ(𝑡)d𝜇(𝑡) and 𝑔𝜇(𝑥) = ∫𝒳

|

|

𝐾(𝑥, 𝑡)|
|

2d𝜇(𝑡);

also, 𝐿𝜇 is trace-class, with trace(|𝐿𝜇|) ⩽ 𝜏𝜇.

Remark: For all 𝑔 ∈ , ⟨𝑔𝜇 | 𝑔⟩ = ∫𝒳 𝑔(𝑡)d𝜇(𝑡).

Isometric representation
For all 𝜇 ∈ 𝔽 (𝐾), we have 𝐿𝜇 ∈ (Γ) and Γ[𝐿𝜇] = 𝑔𝜇.

Proof: Γ∗[𝑔𝜇] = 𝐿𝜇.
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Generalised integral probability metric (IPM)

Set 𝐵 =
{

𝑔 ∈ |
|

‖𝑔‖ ⩽ 1
}

, and introduce

𝔐(𝜇, 𝜈) = sup
𝑔∈

|

|

|

|

∫𝒳
𝑔(𝑡)d𝜇(𝑡) − ∫𝒳

𝑔(𝑡)d𝜈(𝑡)
|

|

|

|

, 𝜇 and 𝜈 ∈ 𝔽 (𝐾).

Quadrature approximation as generalised IPM

‖𝐿𝜇 − 𝐿𝜈‖HS() = ‖𝑔𝜇 − 𝑔𝜈‖ = 𝔐(𝜇, 𝜈).

Remark: 𝔐(𝜇, 𝜈) = 𝔐(𝜇, 𝜈) (as |𝐾|

2 is ℝ-valued).
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Measures and projections



Projections defined by measures

For 𝜈 ∈ 𝔽 (𝐾), set 𝜈 = range(𝐿
|𝜈|)


and let 𝑃𝜈 be the

orthogonal projection from  onto 𝜈. Also, let 𝐾𝜈 be the
reproducing kernel of 𝜈.

Through 𝑃𝜈, and in addition to 𝐿𝜈, a measure 𝜈 ∈ 𝔽 (𝐾) also
defines the approximations 𝑃𝜈𝐿𝜇, 𝐿𝜇𝑃𝜈 or 𝑃𝜈𝐿𝜇𝑃𝜈 of 𝐿𝜇.

Remark: We have range(𝐿𝜈)

⊆ range(𝐿

|𝜈|)


and
𝐿𝜈 = 𝑃𝜈𝐿𝜈 = 𝐿𝜈𝑃𝜈 = 𝑃𝜈𝐿𝜈𝑃𝜈; also, if 𝜈 =

∑𝑚
𝑖=1 𝜐𝑖𝛿𝑠𝑖 , with 𝜐𝑖 ∈ ℂ,

𝜐𝑖 ≠ 0, then 𝜈 = spanℂ{𝑘𝑠1 ,⋯ , 𝑘𝑠𝑛}.
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For ℎ ∈  and 𝑥 ∈ 𝒳 , we have

𝑃𝜈𝐿𝜇[ℎ](𝑥) = ∫𝒳
𝐾𝜈(𝑥, 𝑡)ℎ(𝑡)d𝜇(𝑡),

so that 𝑃𝜈𝐿𝜇 ∈ HS() can be regarded as an integral operator
defined by 𝐾𝜈 and 𝜇. The following inequalities hold:

‖𝐿𝜇 − 𝑃𝜈𝐿𝜇‖HS() ⩽ ‖𝐿𝜇 − 𝑃𝜈𝐿𝜇𝑃𝜈‖HS() ⩽ ‖𝐿𝜇 − 𝐿𝜈‖HS().

Remark:

‖𝐿𝜇 − 𝑃𝜈𝐿𝜇‖
2
HS() = ∬𝒳

[𝐾(𝑥, 𝑡) −𝐾𝜈(𝑥, 𝑡)]𝐾(𝑡, 𝑥)d𝜇(𝑡)d𝜇(𝑥);

‖𝐿𝜇 − 𝑃𝜈𝐿𝜇𝑃𝜈‖
2
HS() = ∬𝒳

|𝐾(𝑥, 𝑡)|2 − |𝐾𝜈(𝑥, 𝑡)|2d𝜇(𝑡)d𝜇(𝑥).
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Nonnegative measures and
partial 𝐿2-embeddings



For 𝜇 ∈ +(𝐾), let 𝐿2(𝜇) be the Hilbert space of all (ℂ-valued)
square-integrable functions with respect to 𝜇.

From the Cauchy-Schwartz inequality in , we have

∫𝒳
|ℎ(𝑡)|2d𝜇(𝑡) = ∫𝒳

|

|

⟨𝑘𝑡 |ℎ⟩||
2d𝜇(𝑡) ⩽ ‖ℎ‖2𝜏𝜇, ℎ ∈ .
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Embedding of  in 𝐿2(𝜇)
For 𝜇 ∈ +(𝐾), the linear map 𝜄𝜇 ∶  → 𝐿2(𝜇), with 𝜄𝜇[ℎ] the
equiv. class of all meas. fcts 𝜇-a.e. equal to ℎ ∈ , is HS.
For 𝑓 ∈ 𝐿2(𝜇) and 𝑥 ∈ 𝒳 , we have

𝜄∗𝜇[𝑓 ](𝑥) = ⟨𝜄𝜇[𝑘𝑥] | 𝑓 ⟩𝐿2(𝜇) = ∫𝒳
𝐾(𝑥, 𝑡)𝑓 (𝑡)d𝜇(𝑡),

so that 𝜄∗𝜇 ∶ 𝐿2(𝜇) →  is a natural interpretation of 𝐾,𝜇.

Four natural interpretations for 𝐾,𝜇

𝜄∗𝜇 ∈ HS(𝜇,), 𝜄𝜇𝜄
∗
𝜇 ∈ HS(𝜇),

𝐿𝜇 = 𝜄∗𝜇𝜄𝜇 ∈ HS(), 𝜄𝜇𝜄
∗
𝜇𝜄𝜇 ∈ HS(, 𝜇).
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For 𝜈 ∈ 𝔽 (𝐾), 𝜄𝜇 can be approximated by 𝜄𝜇𝑃𝜈.
For 𝑓 ∈ 𝐿2(𝜇) and 𝑥 ∈ 𝒳 , we have

𝑃𝜈𝜄
∗
𝜇[𝑓 ](𝑥) = ⟨𝜄𝜇𝑃𝜈[𝑘𝑥] | 𝑓 ⟩𝐿2(𝜇) = ∫𝒳

𝐾𝜈(𝑥, 𝑡)𝑓 (𝑡)d𝜇(𝑡).

Approximations induced by 𝜄𝜇𝑃𝜈

𝑃𝜈𝜄
∗
𝜇 ∈ HS(𝜇,), 𝜄𝜇𝑃𝜈𝜄

∗
𝜇 ∈ HS(𝜇),

𝑃𝜈𝜄
∗
𝜇𝜄𝜇𝑃𝜈 ∈ HS(), 𝜄𝜇𝑃𝜈𝜄

∗
𝜇𝜄𝜇𝑃𝜈 ∈ HS(, 𝜇).

Remark:

‖𝜄∗𝜇 − 𝑃𝜈𝜄
∗
𝜇‖

2
HS(𝜇,) = ∫𝒳

𝐾(𝑡, 𝑡) −𝐾𝜈(𝑡, 𝑡)d𝜇(𝑡);

‖𝜄𝜇𝜄
∗
𝜇 − 𝜄𝜇𝑃𝜈𝜄

∗
𝜇‖

2
HS(𝜇) = ∬𝒳

|

|

𝐾(𝑥, 𝑡) −𝐾𝜈(𝑥, 𝑡)||
2d𝜇(𝑡)d𝜇(𝑥).

We also have ‖𝜄𝜇𝜄
∗
𝜇 − 𝜄𝜇𝑃𝜈𝜄

∗
𝜇‖HS(𝜇) ⩽ ‖𝜄∗𝜇𝜄𝜇 − 𝑃𝜈𝜄

∗
𝜇𝜄𝜇‖HS(). 18



Error maps



• For 𝜇 ∈ 𝔽 (𝐾):

𝐷𝜇(𝜈) = ‖𝐿𝜇 − 𝐿𝜈‖
2
HS(), 𝐶P

𝜇 (𝜈) = ‖𝐿𝜇 − 𝑃𝜈𝐿𝜇‖
2
HS() and

𝐶PP
𝜇 (𝜈) = ‖𝐿𝜇 − 𝑃𝜈𝐿𝜇𝑃𝜈‖

2
HS(), 𝜈 ∈ 𝔽 (𝐾).

• For 𝜇 ∈ +(𝐾):

𝐶 tr
𝜇 (𝜈) = ‖𝜄∗𝜇 − 𝑃𝜈𝜄

∗
𝜇‖

2
HS(𝜇,) and 𝐶F

𝜇 (𝜈) = ‖𝜄𝜇𝜄
∗
𝜇 − 𝜄𝜇𝑃𝜈𝜄

∗
𝜇‖

2
HS(𝜇).

• Bonus: Introduction of an invariance under rescaling in 𝐷𝜇;

𝑅𝜇(𝜈) = min
𝑐⩾0

𝐷𝜇(𝑐𝜈)

=

{

‖𝑔𝜇‖
2
 −ℜ

(

⟨𝑔𝜇 | 𝑔𝜈⟩
)2/

‖𝑔𝜈‖
2 if ℜ

(

⟨𝑔𝜇 | 𝑔𝜈⟩
)

> 0,

‖𝑔𝜇‖
2
 otherwise.
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𝜈 ↦ 𝐷𝜇(𝜈)

𝜇
𝜐1

𝜐2

𝜈 ↦ 𝑅𝜇(𝜈)

𝜇
𝜐1

𝜐2

𝜈 ↦ 𝐶PP
𝜇 (𝜈)

𝜇
𝜐1

𝜐2

Figure 1: Representation of the maps 𝐷𝜇, 𝑅𝜇 and 𝐶PP
𝜇 on +(𝐾); the

considered measures are of the form 𝜈 = 𝜐1𝛿𝑥1 + 𝜐2𝛿𝑥2 .

Remark: For all 𝜈 ∈ 𝔽 (𝐾), we have:

𝐶F
𝜇 (𝜈) ⩽ 𝐶P

𝜇 (𝜈) ⩽ 𝐶PP
𝜇 (𝜈) ⩽ 𝑅𝜇(𝜈) ⩽ 𝐷𝜇(𝜈).
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A quick word about matrices



Consider a PSD matrix 𝐊 ∈ ℂ𝑁×𝑁 , 𝑁 ∈ ℕ.

• Let  be the Euclidean space ℂ𝑁 .
• Consider the measure 𝜇 =

∑𝑁
𝑗=1 𝛿𝑗 on 𝒳 = [𝑁]; then 𝐿2(𝜇)

can be identified with  .
• The entries of 𝐊 are the values of the kernel of a RKHS of
ℂ-valued functions on [𝑁].

• This RKHS can be identified with  = spanℂ{𝐊} ⊆ ℂ𝑁 ,
with ⟨𝒉 |𝒇 ⟩ = 𝒉∗𝐊†𝒇 , 𝒉 and 𝒇 ∈ .

• The support 𝐼 ⊆ [𝑁] of a measure 𝜈 on [𝑁] defines a sample
of columns of 𝐊.

• Set 𝐼 = spanℂ{𝐊∙,𝐼}, and denote by 𝑃𝐼 the orthogonal
projection from  onto 𝐼 .

• We have 𝑃𝐼𝐊 = 𝐊∙,𝐼 (𝐊𝐼,𝐼 )†𝐊𝐼,∙ = 𝐊̂(𝐼), the low-rank
approximation of 𝐊 induced by the sample of columns 𝐊∙,𝐼 .
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Conclusion



• Equivalence between the quadrature approximation of
trace-class integral operators with PSD kernels and the
approximation of integral functionals on RKHSs with
squared-modulus kernels.

• (In combination with sparsity-inducing mechanisms),
quadrature approximation may be used as a differentiable and
numerically efficient surrogate for the characterisation of
projection-based approximations.
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Thank you
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