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Motivations



e (X, A) a general measurable space.
e /i a general measure on (X, A).
o K : XXX — C a positive-semidefinite (PSD) kernel.

Integral operator defined by K and u.

Ly, Lf100) = / K(x, ) f(®)du(r),

x
with f : X > Candx e X.

Remark: This class of operators encompasses the PSD matrices
(case & =[N],and u= YN 6, NeN

j=1 55 )

Notation: [N]={1,---,N}.



Problem: How to design accurate low-rank approximations of

operators of the form Ly 7

Remark: Rank-optimal approximations correspond to truncated
spectral expansions; hence, such approximations can only be
implemented for operators/matrices for which an SVD is available
beforehand.

Two ways to tackle the problem:

e approximation of the measure y;

e approximation of the kernel K.



Sampling-based approximations

Notations: Let H be the RKHS associated with K.
Fort € X, let k, € H be defined as k,(x) = K(x,1), x € X.

From a sample {s,,-,s,,} €, m €N, we may:

e approximate u by v = Z, 1 0;65,, v; € C;
e approximate the kernel K by the reproducing kernel of the

subspace spanc{k; ..k, } CH.

New problem: How to design (sparse) samples leading to
accurate approximations?






Hilbert-Schmidt operators on
RKHSs



H, separable RKHS with reproducing kernel K.
HS(H), Hilbert space of all Hilbert-Schmidt (HS) op. on H.
G, RKHS associated with |K|* (squared-modulus kernel);

IKI*(x,1) = |[K(x,0)|" = K(x, )K(x,1), x and 1 € L.

Fora,b € H, let T,, € HS(H) be the rank-1 linear operator

given by T, ,[h] = a(b| h),,, h € H. Set S, = T,,.

a,b



Singular value decomposition

An operator T € HS(H) always admits a decomposition of the
form 7" =3 I C N, where {5,},o; € £%(0) is the set of all
strictly-positive singular values of T, and where {u;},.; and {v;},

0; Hl’ i€l

are two orthonormal systems in H.

The map Gamma...
ForT =) € HS(H), define the C-valued function

iel Oi u \0;

TT1(x) = ) ou,(x)v,(x),x € X

i€l



.is a natural coisometry from HS(H) onto ¢

The map I' is a natural coisometry from HS(H) onto G, with
HS(H)
initial space I(I') = spanc{S; |x € T} C HS(H).

For all T € HS(H) and x € 2, we have

LTI = (Si | Tusaey = (ki | Tk, D)y = Tk J(X).

Through T, operators in I(T') are isometrically (and bijectively)
represented as functions in the RKHS G.



Remark:

H, the RKHS associated with K (conjugate RKHS).
e H is isometric to H’, the continuous dual of 7.
HS(H) is isometric to H ® H.

G is the product of H and H.

Cy, ' H ® H — C, the pullback along the diagonal.

HS(H)

L\/

HOH —HOH



Basic properties:

e if T € HS(H) is self-adjoint, then I'[T'] is real-valued,;
e if T € HS(H) is PSD, then I'[T] is nonnegative;

e if T € HS(H) is PSD and I'[T] = 0, then T = 0; and
o if T € I(T'), then T* € I(T).

Remark: The map I is also well-defined when all the involved
Hilbert spaces are real. We in this case have

I(T') = spang {.S; |x € ,EL"}HS(H), and the operators in Z(I') are
self-adjoint; also, if T* = =T, then I'[T] = 0. By comparison, in the

complex case, if T* = —T, then the function I'[T'] is pure-imaginary.
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Isometric representation of

integral operators




Measurability conditions

o Forallte X, k, € H is measurable.

e The diagonal of K is measurable.

For a measure u on (X', A), define

7, :/K(t,t)dl,ul(t)e RooU {+00);
X

and let 7,.(K), 7 (K) and 7-(K) be the sets of all nonnegative,

signed and complex measures such that 7, is finite.
Set T.(K) = T(K) U To(K).
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For u € T.(K), set
= /95 S, du(r) e HS(H) and g, = L |k, |*du(r) € G;
in particular, for h € H and x € &,
L,[h)(x) = /5[ K(x. Dh()du(t) and g,(x) = L |K (e, )] du(@):

also, L, is trace-class, with trace(|L,|) < 7,.

Remark: Forall g € G, (g,|8); = [, g)du().

Isometric representation
For all 4 € Te(K), we have L, € I(') and I'[L, ] = g,,.

Proof: T*[g,]=L,,. O
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Generalised integral probability metric (IPM)
Set B, = {g € |lIglly < 1}, and introduce

M(u,v) = sup
gEB;

/g(t)du(t) —/ g(t)dV(t)‘, p and v € Te(K).
9 9

Quadrature approximation as generalised IPM

”Lu - LVHHS(H) = ||g,, - gV”g = Emg(ll, v).

Remark: M (u,v) = M,(u, V) (as |K|* is R-valued).
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Measures and projections




Projections defined by measures

S—
For v € Te(K), set H, =range(L, ) and let P, be the
orthogonal projection from H onto H,. Also, let K, be the
reproducing kernel of H,.

Through P, and in addition to L
defines the approximations P I. , L P or P L P of L.

a measure v € T(K) also

V!

M M
Remark: We have range(L,) Crange(L;,) and
L,=PL,=L,P =PL,P;also, ifv=73" v, witho,€C,
v; #0, then H, = spanc{k; , .k, }.
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For h € H and x € &, we have
P L, [h](x)= / K, (x,)h(t)du(),
x

so that P L, € HS(H) can be regarded as an integral operator
defined by K, and u. The following inequalities hold:

”L/( - Pv L;(”HS(H) < ”L P\/L/(P ”HS(H) < ”L/( - Lv”HS(H)'
Remark:

IL, = P,L I} = / [K(x,1) — K, (x, DK, x)dpu(®)dpu(x);

IL, = P,L,P}s = / |K(x, D> = 1K, e, )P du(Ddp(x).
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Nonnegative measures and

partial L>-embeddings




For u € T.(K), let L*(u) be the Hilbert space of all (C-valued)
square-integrable functions with respect to u.

From the Cauchy-Schwartz inequality in H, we have

/ A Pdur) = / [k, | B[P da() < NIRIE 7,0 € H.
b g%
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Embedding of H in L?(u)

For u € T,(K), the linear map 1, : H — L?(u), with 1,[h] the
equiv. class of all meas. fcts u-a.e. equal to h € H, is HS.
For f € L*(u) and x € &, we have

L) = (k] ) g = /9[ K(x.0)f 0du(@).

so that zz : L?>(u) — H is a natural interpretation of Ly,

Four natural interpretations for £ ,

1;‘; € HS(u, H), lﬂl;’; € HS(p),
L, = 11*41” € HS(H), lﬂl;’;l” € HS(H, p).
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For v € T(K), 1, can be approximated by 1P,
For f € L*(u) and x € I, we have

PrLfIx) = P Lk ]| f) g = / K,(x, 1) f @)du(®).
G¢

Approximations induced by 1P,

P € HS(u. H), 1P 1" € HS(u),
P P € HS(H), P11 P, € HS(H, p).

1
|7 T I

Remark:

* * 112 _ _ .
||1M—PV1M||HS(M’H)—/%K(t,t) K, (t,)du(t);

% * 2
It =1 P g = //5[ K (x, 1) — K, (o) du()duo).

We also have N0 =1, Prllusg < N0, = Pt llasae-
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Error maps




o For u € T.(K):
— 2 PN 2
D”(V) - ”LM - LV”HS(H)’ C”(V) - ”L” - PVLM”HS(H) and
Crv=IL, - PVLﬂPvlllz{S(H), v € T(K).

o For y e T, (K):

tr _ * * 112 F _ * * 112
CM ) = ||1” Pv1M||HS(”’H) and Cﬂ(v) = ||l”1” I”Pvlﬂ”HS(ﬂ).
e Bonus: Introduction of an invariance under rescaling in D,

R,(v) = r?;l(l)l D, (cv)

_ { &I = R((, 18.)6) " /Nl if R(Cg, 1 8.)5) > O,

||g”||é otherwise.
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Vi C” )

L)

Figure 1: Representation of the maps D,, R, and CEP on T, (K); the
considered measures are of the form v =03, +0,6,,.

Remark: For all v e T.(K), we have:

CEW) < CFV) < CP' (W) < R, (V) < D, ).
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A quick word about matrices




Consider a PSD matrix K € CN*N N e N.

Let £ be the Euclidean space CV.

Consider the measure y = Z;V:] 6; on & = [N]; then L*(p)
can be identified with £.

The entries of K are the values of the kernel of a RKHS of
C-valued functions on [N].

This RKHS can be identified with H = span-{K} € C",
with (h| f),, = "K' f, hand f € H.

The support I C [N] of a measure v on [N] defines a sample
of columns of K.

Set H; = spanc{K, ;}, and denote by P; the orthogonal
projection from H onto H,.

We have P,K =K_ (K, )'K,, = K(I), the low-rank
approximation of K induced by the sample of columns K ;.
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Conclusion




e Equivalence between the quadrature approximation of
trace-class integral operators with PSD kernels and the
approximation of integral functionals on RKHSs with
squared-modulus kernels.

e (In combination with sparsity-inducing mechanisms),
quadrature approximation may be used as a differentiable and
numerically efficient surrogate for the characterisation of
projection-based approximations.
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Thank you
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