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Motivating example

Question 1

Which of the two explanations below would help you most to understand 
and manage your own osteoarthritis?

Explanation 1A Explanation 1B

Osteoarthritis is the most common form of arthritis 

in the UK

You have osteoarthritis, a condition which can 

affect the whole joint and surrounding muscles

Pain, stiffness, and limitation in full movement of 

the joint are typical

Osteoarthritis can affect your joints in different 

ways at different times, sometimes you may not 

have any difficulties but at other times you might

You can take steps to improve your osteoarthritis, 

by being physically active, maintaining a healthy 

weight and thinking positively. This can help how 

you feel and what you can do now, and may help 

to avoid the need for more treatments in future. 

Support is available to help you to achieve this

There is no cure for osteoarthritis but there are a 

number of things that can be done to ease 

symptoms

Even a modest weight loss can make quite a 

difference

Even a modest weight loss can make quite a 

difference

Please tick one box only

Explanation 1A Explanation 1B
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Motivating example

Question 5

Which of the two explanations below would help you most to understand 
and manage your own osteoarthritis?

Explanation 5A Explanation 5B

Osteoarthritis is caused by an ongoing process of 

wear and the joint trying to heal itself

Osteoarthritis occurs perhaps because of severe 

wear and tear to the joints or a problem with the 

repair process, and osteoarthritis develops

It is mild in many cases; however, about 1 in 10 

people aged over 65 years have a major disability 

due to osteoarthritis

It is mild in many cases; however, about 1 in 10 

people aged over 65 years have a major disability 

due to osteoarthritis

Many people can manage a regular walk It can be easier to keep moving if you build up 

from where you are now and put new activities to 

improve your osteoarthritis in to your daily routine

Keeping active and maintaining a healthy weight 

are best for your osteoarthritis in the long run, 

even though some social activities can make this 

difficult

Many people are afraid to exercise because they 

believe, mistakenly, that it’ll cause further damage 

to their joints

Please tick one box only

Explanation 5A Explanation 5B
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Partial profiles

Full profiles ...

... use all factors
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Profile strength S: Number of factors shown
Comparison depth d: Number of shown factors where

alternatives differ
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MNL model

K factors with levels 1, . . . , vk, k = 1, . . . ,K, of interest
and extra level 0 to indicate factor is not shown

Pairs (s, t) of partial profiles where s = (s1, . . . , sK), s = (t1, . . . , tK)
with profile strength S and comparison depth d

MNL probability of choosing s from pair (s, t):

P (s; (s, t)) =
exp[f>(s)β]

exp[f>(s)β] + exp[f>(t)β]
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Design efficiency

Exact partial-profile designs ξN : pairs (s1, t1), . . . , (sN , tN )

Fisher information matrix of ξN in MNL Model: MξN ,β

Make indifference assumption β = 0. Then

I MξN ,β = MξN ,0 = 1
4X

>X

where X has rows f>(sn)− f>(tn), n = 1, . . . , N

I D-efficiency of ξ

effD(ξN ) = 100×
(

det(MξN ,0/N)

Dopt

)1/p

where Dopt is determinant of information matrix of D-optimal
approximate design

I Dopt for ME and ME + 2FI models: GGHS
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The question of replication

Given

I maximum number of respondents T

I q choice questions per respondent

I exact base design ξN of size N < qT

How to replicate ξN ?
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Approaches to replication

I Simple repetition of base design ξN

I R copies of ξN such that RN ≈ qT

I split copies into distinct sets of q questions

I Repetition of ξN with factor permutation

I Assume: Groups of factors with same number of levels,

e.g. uK1
1 × uK2

2 where K1 +K2 = K

I R copies of ξN such that RN ≈ qT

I for each copy: randomly permute factors in same group

I split copies into distinct sets of q questions
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Illustration of factor permutation
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Properties of factor permutation

Consider exact base design ξN and design ξRN consisting of R
factor-permuted replicates of ξN for ME or ME + 2FI model

I effD(ξRN ) ≥ effD(ξN )

Justification: equivariance of f , convexity and invariance under
orthogonal transformations of (appropriate) criterion function for
D-optimality

I MξN ,0 block diagonal ⇒ MξRN ,0 block diagonal
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Example for simulation study
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Simulation study

I 35 × 44 main-effects model
I p = 22 parameters
I S = d = 5 factors with distinct levels per question

I Survey
I Maximum sample size: 200 respondents
I Expected response rate: 25%
I 8 choice pairs per person

I Base designs and replication
A D-opt. (GGS09, N = 528 pairs, D-eff: 100%), 3 permuted reps
B D-eff. (JMP, N = 44 pairs, D-eff: ≈ 77%), 36 non-permuted reps
C B, 36 permuted reps

I Simulation of 1000 surveys
I Per survey: 200/4 = 50 respondents with 8 pairs each
I For each of A, B, C and each survey: realized design with 400 pairs
I Compare D-efficiencies of 1000 realized designs
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Results
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Conclusions

I When applicable, replication with factor permutation preferable to
simple repetition of base design

I Factor permutation increases D-efficiency

I Permutation approach works well with both analytical and
algorithmic D-optimal or D-efficient base designs

I Suggestion for algorithmic designs: Use larger number of choice sets
than “usual”
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