Design replication in partial-profile choice experiments

Heiko Großmann
OvGU Magdeburg, DE

$$
\text { mODa } 13
$$

10-14 July 2023, Southampton, UK

Outline

－Motivation
－Technical background
－Design replication
－Simulation study

Motivating example

Question 1

Which of the two explanations below would help you most to understand and manage your own osteoarthritis?
\(\left.$$
\begin{array}{|l|l|}\hline \text { Explanation 1A } & \text { Explanation 1B } \\
\hline \begin{array}{l}\text { Osteoarthritis is the most common form of arthritis } \\
\text { in the UK }\end{array} & \begin{array}{l}\text { You have osteoarthritis, a condition which can } \\
\text { affect the whole joint and surrounding muscles }\end{array} \\
\begin{array}{l}\text { Pain, stiffness, and limitation in full movement of } \\
\text { the joint are typical }\end{array} & \begin{array}{l}\text { Osteoarthritis can affect your joints in different } \\
\text { ways at different times, sometimes you may not } \\
\text { have any difficulties but at other times you might }\end{array} \\
\text { You can take steps to improve your osteoarthritis, } \\
\text { by being physically active, maintaining a healthy } \\
\text { weight and thinking positively. This can help how } \\
\text { you feel and what you can do now, and may help } \\
\text { to avoid the need for more treatments in future. } \\
\text { Support is available to help you to achieve this }\end{array}
$$ \quad \begin{array}{l}There is no cure for osteoarthritis but there are a

number of things that can be done to ease\end{array}\right\}\)| syms |
| :--- |
| Even a modest weight loss can make quite a |
| difference |\quad| Even a modest weight loss can make quite a |
| :--- |
| difference |

Please tick one box only

Explanation 1A
Explanation 1B

R3-S253-Q2017-B2C01MDP163

Motivating example

Question 5

Which of the two explanations below would help you most to understand and manage your own osteoarthritis?

Explanation 5A	Explanation 5B		
Osteoarthritis is caused by an ongoing process of wear and the joint trying to heal itself	Osteoarthritis occurs perhaps because of severe wear and tear to the joints or a problem with the repair process, and osteoarthritis develops		
It is mild in many cases; however, about 1 in 10 people aged over 65 years have a major disability due to osteoarthritis	It is mild in many cases; however, about 1 in 10 people aged over 65 years have a major disability due to osteoarthritis		
Many people can manage a regular walk	It can be easier to keep moving if you build up from where you are now and put new activities to improve your osteoarthritis in to your daily routine		
Keeping active and maintaining a healthy weight			
are best for your osteoarthritis in the long run,			
even though some social activities can make this			
difficult		\quad	Many people are afraid to exercise because they
:---			
believe, mistakenly, that it'll cause further damage			
to their joints			

Please tick one box only

Explanation 5A
Explanation 5B

R1-S022-Q0173-B1C10MDP170

Partial profiles

Full profiles ．．．
．．．use all factors

A2	A1
B1	B2
C2	C1
D1	D1

Partial profiles

Full profiles ．．．
．．．use all factors

Partial profiles ．．．

．．．use some factors

Partial profiles

Full profiles ．．．
．．．use all factors

Partial profiles ．．．

．．．use some factors

Partial profiles

Full profiles ．．．
．．．use all factors

Partial profiles ．．．

．．．use some factors

Profile strength S ：
Comparison depth d ：

Number of factors shown
Number of shown factors where alternatives differ

MNL model

K factors with levels $1, \ldots, v_{k}, k=1, \ldots, K$, of interest and extra level 0 to indicate factor is not shown

MNL model

K factors with levels $1, \ldots, v_{k}, k=1, \ldots, K$ ，of interest and extra level 0 to indicate factor is not shown

Pairs（ \mathbf{s}, \mathbf{t} ）of partial profiles where $\mathbf{s}=\left(s_{1}, \ldots, s_{K}\right), \mathbf{s}=\left(t_{1}, \ldots, t_{K}\right)$ with profile strength S and comparison depth d

MNL model

K factors with levels $1, \ldots, v_{k}, k=1, \ldots, K$ ，of interest and extra level 0 to indicate factor is not shown

Pairs（ \mathbf{s}, \mathbf{t} ）of partial profiles where $\mathbf{s}=\left(s_{1}, \ldots, s_{K}\right), \mathbf{s}=\left(t_{1}, \ldots, t_{K}\right)$ with profile strength S and comparison depth d

MNL probability of choosing \mathbf{s} from pair（ \mathbf{s}, \mathbf{t} ）：

$$
P(\mathbf{s} ;(\mathbf{s}, \mathbf{t}))=\frac{\exp \left[\mathbf{f}^{\top}(\mathbf{s}) \boldsymbol{\beta}\right]}{\exp \left[\mathbf{f}^{\top}(\mathbf{s}) \boldsymbol{\beta}\right]+\exp \left[\mathbf{f}^{\top}(\mathbf{t}) \boldsymbol{\beta}\right]}
$$

Design efficiency

Exact partial－profile designs ξ_{N} ：pairs $\left(\mathbf{s}_{1}, \mathbf{t}_{1}\right), \ldots,\left(\mathbf{s}_{N}, \mathbf{t}_{N}\right)$
Fisher information matrix of ξ_{N} in MNL Model：
$\mathbf{M}_{\xi_{N}, \boldsymbol{\beta}}$

Design efficiency

Exact partial－profile designs ξ_{N} ：pairs $\left(\mathbf{s}_{1}, \mathbf{t}_{1}\right), \ldots,\left(\mathbf{s}_{N}, \mathbf{t}_{N}\right)$
Fisher information matrix of ξ_{N} in MNL Model：
$\mathbf{M}_{\xi_{N}, \boldsymbol{\beta}}$

Make indifference assumption $\boldsymbol{\beta}=\mathbf{0}$ ．

Design efficiency

Exact partial-profile designs ξ_{N} : pairs $\left(\mathbf{s}_{1}, \mathbf{t}_{1}\right), \ldots,\left(\mathbf{s}_{N}, \mathbf{t}_{N}\right)$
Fisher information matrix of ξ_{N} in MNL Model: $\quad \mathbf{M}_{\xi_{N}, \boldsymbol{\beta}}$

Make indifference assumption $\boldsymbol{\beta}=\mathbf{0}$. Then
$-\mathbf{M}_{\xi_{N}, \boldsymbol{\beta}}=\mathbf{M}_{\xi_{N}, \mathbf{0}}=\frac{1}{4} \mathbf{X}^{\top} \mathbf{X}$ where \mathbf{X} has rows $\mathbf{f}^{\top}\left(\mathbf{s}_{n}\right)-\mathbf{f}^{\top}\left(\mathbf{t}_{n}\right), n=1, \ldots, N$

Design efficiency

Exact partial－profile designs ξ_{N} ：pairs $\left(\mathbf{s}_{1}, \mathbf{t}_{1}\right), \ldots,\left(\mathbf{s}_{N}, \mathbf{t}_{N}\right)$
Fisher information matrix of ξ_{N} in MNL Model：$\quad \mathbf{M}_{\xi_{N}, \boldsymbol{\beta}}$

Make indifference assumption $\boldsymbol{\beta}=\mathbf{0}$ ．Then
－ $\mathbf{M}_{\xi_{N}, \boldsymbol{\beta}}=\mathbf{M}_{\xi_{N}, \mathbf{0}}=\frac{1}{4} \mathbf{X}^{\top} \mathbf{X}$
where \mathbf{X} has rows $\mathbf{f}^{\top}\left(\mathbf{s}_{n}\right)-\mathbf{f}^{\top}\left(\mathbf{t}_{n}\right), n=1, \ldots, N$
－D－efficiency of ξ

$$
\operatorname{eff}_{D}\left(\xi_{N}\right)=100 \times\left(\frac{\operatorname{det}\left(\mathbf{M}_{\xi_{N}, \mathbf{0}} / N\right)}{D_{\mathrm{opt}}}\right)^{1 / p}
$$

where $D_{\text {opt }}$ is determinant of information matrix of D－optimal approximate design

Design efficiency

Exact partial－profile designs ξ_{N} ：pairs $\left(\mathbf{s}_{1}, \mathbf{t}_{1}\right), \ldots,\left(\mathbf{s}_{N}, \mathbf{t}_{N}\right)$
Fisher information matrix of ξ_{N} in MNL Model：$\quad \mathbf{M}_{\xi_{N}, \boldsymbol{\beta}}$

Make indifference assumption $\boldsymbol{\beta}=\mathbf{0}$ ．Then
－ $\mathbf{M}_{\xi_{N}, \boldsymbol{\beta}}=\mathbf{M}_{\xi_{N}, \mathbf{0}}=\frac{1}{4} \mathbf{X}^{\top} \mathbf{X}$ where \mathbf{X} has rows $\mathbf{f}^{\top}\left(\mathbf{s}_{n}\right)-\mathbf{f}^{\top}\left(\mathbf{t}_{n}\right), n=1, \ldots, N$
－D－efficiency of ξ

$$
\operatorname{eff}_{D}\left(\xi_{N}\right)=100 \times\left(\frac{\operatorname{det}\left(\mathbf{M}_{\xi_{N}, \mathbf{0}} / N\right)}{D_{\mathrm{opt}}}\right)^{1 / p}
$$

where $D_{\text {opt }}$ is determinant of information matrix of D－optimal approximate design
－$D_{\text {opt }}$ for ME and ME +2 FI models：GGHS

The question of replication

Given
－maximum number of respondents T
－q choice questions per respondent
－exact base design ξ_{N} of size $N<q T$

$$
\text { How to replicate } \xi_{N} \text { ? }
$$

Approaches to replication

Approaches to replication

－Simple repetition of base design ξ_{N}

Approaches to replication

－Simple repetition of base design ξ_{N}
－R copies of ξ_{N} such that $R N \approx q T$
－split copies into distinct sets of q questions

Approaches to replication

－Simple repetition of base design ξ_{N}
－R copies of ξ_{N} such that $R N \approx q T$
－split copies into distinct sets of q questions
－Repetition of ξ_{N} with factor permutation

Approaches to replication

－Simple repetition of base design ξ_{N}
－R copies of ξ_{N} such that $R N \approx q T$
－split copies into distinct sets of q questions
－Repetition of ξ_{N} with factor permutation
－Assume：Groups of factors with same number of levels， e．g．$u_{1}^{K_{1}} \times u_{2}^{K_{2}}$ where $K_{1}+K_{2}=K$

Approaches to replication

－Simple repetition of base design ξ_{N}
－R copies of ξ_{N} such that $R N \approx q T$
－split copies into distinct sets of q questions
－Repetition of ξ_{N} with factor permutation
－Assume：Groups of factors with same number of levels， e．g．$u_{1}^{K_{1}} \times u_{2}^{K_{2}}$ where $K_{1}+K_{2}=K$
－R copies of ξ_{N} such that $R N \approx q T$

Approaches to replication

－Simple repetition of base design ξ_{N}
－R copies of ξ_{N} such that $R N \approx q T$
－split copies into distinct sets of q questions
－Repetition of ξ_{N} with factor permutation
－Assume：Groups of factors with same number of levels， e．g．$u_{1}^{K_{1}} \times u_{2}^{K_{2}}$ where $K_{1}+K_{2}=K$
－R copies of ξ_{N} such that $R N \approx q T$
－for each copy：randomly permute factors in same group

Approaches to replication

－Simple repetition of base design ξ_{N}
－R copies of ξ_{N} such that $R N \approx q T$
－split copies into distinct sets of q questions
－Repetition of ξ_{N} with factor permutation
－Assume：Groups of factors with same number of levels， e．g．$u_{1}^{K_{1}} \times u_{2}^{K_{2}}$ where $K_{1}+K_{2}=K$
－R copies of ξ_{N} such that $R N \approx q T$
－for each copy：randomly permute factors in same group
－split copies into distinct sets of q questions

Illustration of factor permutation

Properties of factor permutation

Consider exact base design ξ_{N} and design $\xi_{R N}$ consisting of R factor－permuted replicates of ξ_{N} for ME or ME +2 FI model

Properties of factor permutation

Consider exact base design ξ_{N} and design $\xi_{R N}$ consisting of R factor－permuted replicates of ξ_{N} for ME or $\mathrm{ME}+2 \mathrm{FI}$ model
－ $\operatorname{eff}_{D}\left(\xi_{R N}\right) \geq \operatorname{eff}_{D}\left(\xi_{N}\right)$
Justification：equivariance of \mathbf{f} ，convexity and invariance under orthogonal transformations of（appropriate）criterion function for D－optimality

Properties of factor permutation

Consider exact base design ξ_{N} and design $\xi_{R N}$ consisting of R factor－permuted replicates of ξ_{N} for ME or ME +2 FI model
－ $\operatorname{eff}_{D}\left(\xi_{R N}\right) \geq \operatorname{eff}_{D}\left(\xi_{N}\right)$
Justification：equivariance of \mathbf{f} ，convexity and invariance under orthogonal transformations of（appropriate）criterion function for D－optimality
－ $\mathbf{M}_{\xi_{N}, \mathbf{0}}$ block diagonal $\Rightarrow \mathbf{M}_{\xi_{R N}, \mathbf{0}}$ block diagonal

Example for simulation study

Entscheidung 1 von 10 :		
	Operation A	Operation B
Wabrscheinlichkeit fü caameatte Iokontinenz	0 von 100 Personen 	1 von 100 Personen
Häufigkeit des Wasserlassens in der Nacht (*)	1 Mal pro Nacht	3 Mal pro Nacht
Dringlichkeit des Wasserlassens.alin	Sofort auf Toilette müssen	30 Minuten einhalten können
Dauer des Wasserlassens I	6 Minuten	3 Minuten
	20 von 100 Personen 	
Würden Sie Operation A oder B wählen?	\ldots	

Entscheidung 2 von 10 :		
	Operation A	Operation B
Wahrscheinlichkeit für dauerhafte Inkontinenz.	0 von 100 Personen 	
Häufigkeit, dess.Wasserlassens in.der. Nacht.	3 Mal pro Nacht	5 Mal pro Nacht
Yeränderung der.Erektionsfähigkeit. .	\Rightarrow Nimmt sehr gering $a b$	\Leftrightarrow Unverändert
Wahrscheinlichkeit einer erneuten Operation ${ }^{\text {Prata }}$	10 von 100 Personen 	0 von 100 Personen
Wabrscheinlichkeit für eine Funktionsstörung des Samenergusses.	65 von 100 Personen 	
Würden Sie Operation A oder B wählen?	4	

Simulation study

Simulation study

－ $3^{5} \times 4^{4}$ main－effects model
－$p=22$ parameters
－$S=d=5$ factors with distinct levels per question

Simulation study

－ $3^{5} \times 4^{4}$ main－effects model
－$p=22$ parameters
－$S=d=5$ factors with distinct levels per question
－Survey
－Maximum sample size： 200 respondents
－Expected response rate： 25%
－ 8 choice pairs per person

Simulation study

－ $3^{5} \times 4^{4}$ main－effects model
－$p=22$ parameters
－$S=d=5$ factors with distinct levels per question
－Survey
－Maximum sample size： 200 respondents
－Expected response rate： 25%
－ 8 choice pairs per person
－Base designs and replication
A D－opt．（GGS09，$N=528$ pairs，D－eff： 100% ）， 3 permuted reps
B D－eff．（JMP，$N=44$ pairs，D－eff：$\approx 77 \%$ ）， 36 non－permuted reps
C B， 36 permuted reps

Simulation study

－ $3^{5} \times 4^{4}$ main－effects model
－$p=22$ parameters
－$S=d=5$ factors with distinct levels per question
－Survey
－Maximum sample size： 200 respondents
－Expected response rate： 25%
－ 8 choice pairs per person
－Base designs and replication
A D－opt．（GGS09，$N=528$ pairs，D－eff： 100% ）， 3 permuted reps
B D－eff．（JMP，$N=44$ pairs，D－eff：$\approx 77 \%$ ）， 36 non－permuted reps
C B， 36 permuted reps
－Simulation of 1000 surveys
－Per survey： $200 / 4=50$ respondents with 8 pairs each
－For each of A，B，C and each survey：realized design with 400 pairs
－Compare D－efficiencies of 1000 realized designs

Results

Conclusions

- When applicable, replication with factor permutation preferable to simple repetition of base design
- Factor permutation increases D-efficiency
- Permutation approach works well with both analytical and algorithmic D-optimal or D-efficient base designs
- Suggestion for algorithmic designs: Use larger number of choice sets than "usual"

References

Graßhoff，U．，Großmann，H．，Holling，H．\＆Schwabe，R．（2003）．Optimal paired comparison designs for first－order interactions．Statistics，37，373－386．

Graßhoff，U．Großmann，H．，Holling，H．，\＆Schwabe，R．（2004）．Optimal designs for main effects in linear paired comparison models．J．Statist．Plann．
Inference，126，361－376．
Großmann，H．（2017）．Partial－profile choice designs for estimating main effects and interactions of two－level attributes from paired comparison data．Journal of Statistical Theory and Practice，11，236－253．

Großmann，H．，Graßhoff，U．\＆Schwabe，R．（2009）．Approximate and exact optimal designs for paired comparisons of partial profiles when there are two groups of factors．J．Statist．Plann．Inference，139，1171－1179．

Großmann，H．，Holling，H．，Graßhoff，U．\＆Schwabe，R．（2006）．Optimal designs for asymmetric linear paired comparisons with a profile strength constraint． Metrika，64，109－119．

Luyten，J．，Kessels，R．，Goos，P．\＆Beutels，P．（2015）．Public preferences for prioritizing preventive and curative health care interventions：a discrete choice experiment．Value in Health，18，224－233．

