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Introduction

» Investigating the properties of static as well as
incremental /sequential design criteria for discriminating between the
correlation structure of (two) Gaussian process models.

» T-optimality (Atkinson and Fedorov, 1975) not applicable since it
assumes iid normal data with constant variance.

» Instead, one may use the symmetrized Kullback-Leibler (KL)
divergence between the two models as criterion.

» Symmetrized KL divergence computationally expensive if many
design points = develop new criteria inspired by Fréchet distance.

» For these new design criteria it is straightforward to introduce
design measures and derive necessary conditions for optimality =
possible to apply approximate design methods.
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Gaussian processes

Gaussian processes/fields
» Marginals of Gaussian fields at any subset of points/locations
have a multivariate normal distribution.

» Frequently used e.g. as surrogate models for computer
experiments (Gramacy, 2020) or in machine learning.

» Gaussian process regression / kriging (Stein, 1999): assume
Gaussian process prior and obtain distribution for “true”
function at unseen locations given observed points.

|
Markus Hainy, JKU 4/21
e




Introduction Static constructions Sequential /incremental designs Conclusion
(o] le} 0000000000000 [} 00

: :
Gaussian processes

: :

Gaussian processes/fields

» Marginals of Gaussian fields at any subset of points/locations
have a multivariate normal distribution.

» Frequently used e.g. as surrogate models for computer
experiments (Gramacy, 2020) or in machine learning.

» Gaussian process regression / kriging (Stein, 1999): assume
Gaussian process prior and obtain distribution for “true”
function at unseen locations given observed points.

» General setting and notation:

» random field Z,, indexed by x € 2~ C RY.

» Y(x): realization of the random field.

> E{Z,} =0V x and E{Z,Z.} = K(x,x') V (x,x") € 272

> kernel K(x,x') = o2 fy(||x — x'||): isotropic, continuous and
decreasing function of the distance.

We do not consider repeated observations (no nugget effect).
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Symmetrized Kullback-Leibler divergence

» Given two probability density functions @o(y, o) and ¢1(y, 61),
maximise the expected power of the likelihood ratio test if model 1
is the true model (see, e.g., Lépez-Fidalgo et al., 2007):

(1) = [ ealy.00)0g {%} dy = Dre(1llo)

» Now maximise the power of the likelihood ratio test if model 0 is
the true model:

Eo(~1) = [ oly.to)log {%} dy = D (vollor)

» The symmetrized KL divergence is the average of these two
divergences (see, e.g., Pronzato et al., 2019):

1
Dki(o, 1) = 5 [Dki(pollw1) + Drr(w1ll¢o)]
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Symmetrized KL divergence for Gaussian random field

» The two models differ through their kernel functions.

» Given the n-point design X, = (x1,...,Xn), construct the
kernel matrix for model i (i =0,1), K, ;, as
{Kn,i}j,k = K(Xj,Xk) for 1 Sj,k <n.

» For the Gaussian random field,

1
n,i Yn =
©n, ( ) (271')"/2 det1/2 Kn,i
» Therefore,

exp [—%Y,,TK;}Yn] ,i=0,1.

PuLkoki](Xn) = 2Dki(pno, pn1) =

1
= 5 {trace(Kn,oK;&) + trace(Kle;’(l))] —n.

» Disadvantages: cumbersome and unstable computation
(matrix inverses), no generalisation to design measures.
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Fréchet distance and ®, criteria

» Consider alternatively the Fréchet distance, related to the
Wasserstein distance (Dowson and Landau, 1982):

Pr (Ko, k1] (Xn) = trace [Ko +K;—2 (K0K1)1/2] ‘

» This is also difficult to compute, but squaring all matrices
gives

P21k, k1] (Xn) = trace (K(z) + K2 -2 KoK1) = trace [(Ko — K1)2] .

> Idea: introduce criteria ®,x, k,] defined as

n
O (ko k) (Xn) = K1 — Kol[5 = > [{K1 — Ko}ij[P, p>0.
ij=1
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Example setup

> 2 =10,10]?, grid size: 25 x 25.
» Rival models: Matérn family (o2 = 1):

> model 0: Matérn 3/2
» model 1: Matérn 5/2

» We consider discrimination designs only for fixed parameters
(locally optimum designs).
» Find inverse length-scales 6y and 61 where both models agree
most:
» Take 6y = 1 in the first kernel, adjust the parameter in the
second kernel minimizing ®1, ®5, ®F, and ®k; for the design

Xe2s.
» Results: #; = 1.0047, 1.0285, 1.0955, 1.3403, resp.
> We have finally used the setting § = (1, 1.07).
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Selection of parameters

Gy, Gy, OfF, Oy

o
o

S &
n

as functions of @ for an equally-spaced 11-point design.
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Criteria for exact designs

Covariance functions at selected parameters
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Left: Plot of the Matérn covariance functions.

Right: Absolute difference of covariance functions at distance x.
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Exact designs for static criteria
o”:1, size:200 ™11, size:200
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Performance of criteria in simulation study
» For each design of size n, N = 100 independent sets of n observations are
simulated from the “true” model 0.

» The hit rate is computed as the proportion of samples where the
likelihood of model 0 is larger than the likelihood of model 1.

» The same is repeated for the case where model 1 is the correct model.

» The two hit rates are averaged to obtain the average hit rates.

Average hit rate

Design size 5 6 7 8 9 10 20 30 40 50
dF 0.580 0.625 0.620 0.625 0.670 0.715 0.795 0.900 0.925 0.950
o3 0.525 0.520 0.555 0.540 0.550 0.610 0.725 0.890 0.910 0.920
®; 0.525 0.520 0.555 0.540 0.550 0.610 0.715 0.860 0.890 0.910
Dy 0.580 0.625 0.620 0.625 0.670 0.715 0.795 0.895 0.925 0.955
| Markus Hainy, JKU 12/21 |
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Design measure version of ®, criterion

» Defining &, as the empirical measure on the points in X,
&n = (1/n) >°7, O, one can write

Dy ko, k1] (Xn) = 1% Bp (o, 1) (€n)

where

Sntioa©) = [ 1K) = Kol )P dS(0E().
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Necessary condition for optimality

Theorem

If the probability measure £* on 2" maximises ¢k, k,1(§), then
Vx e 4, /%\Kl(x, x") = Ko(x,X")|P d&€*(x") < ¢pko,k] (€7)-

Moreover, f%|K1(x, x') — Ko(x,x")|Pde*(x') = bp [Ko,K1](§*) for
&*-almost every x € 2.
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Simplified problem with explicit solution for optimum
> Let Ki(x,x') = WV;(][x —x'||), i=0,1, and
P(t) = |Wi(t) — Wo(t)], t € RT.
> Then 95(6) = [ ulx = x1)P de(x)de(x).
» Consider the extreme case 1) = 1), defined by

1 ift=A,
i(t) = { 0 otherwise.

» Since 1. (t)? = 1(t)P for any p > 0, we only need to consider p = 1.
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Simplified problem with explicit solution for optimum

> Let Ki(x,x') = V;(][x —x'||), i =0,1, and
P(t) = |V1(t) — Wo(t)], t € RT.

> Then 95(6) = [ ulx = x1)P de(x)de(x).

» Consider the extreme case 1) = 1), defined by
1 ift=A,
1/)*(1') = {

0 otherwise.
» Since 1. (t)? = 1(t)P for any p > 0, we only need to consider p = 1.

Theorem

When 1) = 1), and 2~ C RY is large enough to contain a regular d
simplex with edge length A, any measure £* allocating weight 1/(d + 1)
at each vertex of such a simplex maximises ¢1(¢), and

¢1(§7) =d/(d +1).
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Are results for ) = 1), generalisable?

» The results for ¢ = 1, do not generalise to the general
function ¥(t) = |W1(t) — Wo(t)].

» Even if p — 00, one can show that one can always find a
better design than £*, given the design space is large enough.

» However, the simplex design might be close to optimal (at
least for high p).
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[llustration of directional derivative

Surface plots of directional derivatives:
Left: Ky = K071, Ky = K1,1_07 (A ~ 192), p=2.
Right: Ky = K(),l, Ki = Kl,l (A ~ 07), p = 10.
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Numerical optimisation
Two-step approach:

1. Run Fedorov-Wynn algorithm (Fedorov, 1971; Wynn, 1970) for 1000 iterations
using directional derivatives from necessary condition on a dense regular grid.

2. Run continuous optimisation algorithm for coordinates and design weights
starting from design found in step 1.

4 6
L4

s &
X2

Left: The optimal measure for ¢2. Right: The optimal measure for ¢19. 61 = 1.07.
The edge lengths of the triangles are A ~ 1.92.
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Sequential /incremental designs
We also compared the static criteria to the following construction
methods:
» Sequential design:
put next observation(s) where symmetrized KL divergence
between predictive distributions of the models differs most.
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Sequential /incremental designs
We also compared the static criteria to the following construction
methods:
» Sequential design:
put next observation(s) where symmetrized KL divergence
between predictive distributions of the models differs most.
» Incremental design:

» Incrementally build design by putting next point where
(normalised) differences between the prediction errors of the
two models are largest.

» Alternatively use symmetrized KL divergence (cond. on current
design).

» Theoretical investigations:

» prediction-based and KL criteria tend to behave differently and
depend on covering radius (CR) relative to correlation length.

> KL divergence sometimes clearly better suited for
discrimination (remains positive with decreasing CR).
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Conclusion

» Introducing a new family of criteria which are simple to
compute and allow for a formulation in terms of approximate
design measures.

» In our examples, they lead to marginally worse performance
than symmetrized KL divergence.

» For large p, designs with d + 1 support points placed on the
vertices of a simplex are often (close to) optimal for the new
criteria, depending on the size of the design space.

> Not considered yet: behaviour under parameter uncertainty.
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