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Overview

Introduction

▶ Investigating the properties of static as well as
incremental/sequential design criteria for discriminating between the
correlation structure of (two) Gaussian process models.

▶ T-optimality (Atkinson and Fedorov, 1975) not applicable since it
assumes iid normal data with constant variance.

▶ Instead, one may use the symmetrized Kullback-Leibler (KL)
divergence between the two models as criterion.

▶ Symmetrized KL divergence computationally expensive if many
design points ⇒ develop new criteria inspired by Fréchet distance.

▶ For these new design criteria it is straightforward to introduce
design measures and derive necessary conditions for optimality ⇒
possible to apply approximate design methods.
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Gaussian processes

Gaussian processes/fields
▶ Marginals of Gaussian fields at any subset of points/locations

have a multivariate normal distribution.

▶ Frequently used e.g. as surrogate models for computer
experiments (Gramacy, 2020) or in machine learning.

▶ Gaussian process regression / kriging (Stein, 1999): assume
Gaussian process prior and obtain distribution for “true”
function at unseen locations given observed points.

▶ General setting and notation:
▶ random field Zx , indexed by x ∈ X ⊂ Rd .
▶ Y (x): realization of the random field.
▶ E{Zx} = 0 ∀ x and E{ZxZ

′
x} = K (x , x ′) ∀ (x , x ′) ∈ X 2.

▶ kernel K (x , x ′) = σ2 fθ (∥x − x ′∥): isotropic, continuous and
decreasing function of the distance.

▶ We do not consider repeated observations (no nugget effect).
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Symmetrized Kullback-Leibler divergence

Symmetrized Kullback-Leibler divergence
▶ Given two probability density functions φ0(y , θ0) and φ1(y , θ1),

maximise the expected power of the likelihood ratio test if model 1
is the true model (see, e.g., López-Fidalgo et al., 2007):

E1(L) =

∫
φ1(y , θ1) log

{
φ1(y , θ1)

φ0(y , θ0)

}
dy = DKL(φ1∥φ0)

▶ Now maximise the power of the likelihood ratio test if model 0 is
the true model:

E0(−L) =

∫
φ0(y , θ0) log

{
φ0(y , θ0)

φ1(y , θ1)

}
dy = DKL(φ0∥φ1)

▶ The symmetrized KL divergence is the average of these two
divergences (see, e.g., Pronzato et al., 2019):

DKL(φ0, φ1) =
1

2
[DKL(φ0∥φ1) + DKL(φ1∥φ0)]
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Criteria for exact designs

Symmetrized KL divergence for Gaussian random field
▶ The two models differ through their kernel functions.
▶ Given the n-point design Xn = (x1, . . . , xn), construct the

kernel matrix for model i (i = 0, 1), Kn,i , as
{Kn,i}j ,k = K (xj , xk) for 1 ≤ j , k ≤ n.

▶ For the Gaussian random field,

φn,i (Yn) =
1

(2π)n/2 det1/2Kn,i

exp

[
−1

2
Y⊤

n K
−1
n,i Yn

]
, i = 0, 1.

▶ Therefore,

ΦKL [K0,K1](Xn) = 2DKL(φn,0, φn,1) =

=
1

2

[
trace(Kn,0K

−1
n,1) + trace(Kn,1K

−1
n,0)

]
− n.

▶ Disadvantages: cumbersome and unstable computation
(matrix inverses), no generalisation to design measures.
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Criteria for exact designs

Fréchet distance and Φp criteria
▶ Consider alternatively the Fréchet distance, related to the

Wasserstein distance (Dowson and Landau, 1982):

ΦF [K0,K1](Xn) = trace
[
K0 +K1 − 2 (K0K1)

1/2
]
.

▶ This is also difficult to compute, but squaring all matrices
gives

Φ2 [K0,K1](Xn) = trace
(
K2

0 +K2
1 − 2K0K1

)
= trace

[
(K0 −K1)

2
]
.

▶ Idea: introduce criteria Φp [K0,K1] defined as

Φp [K0,K1](Xn) = ∥K1 −K0∥pp =
n∑

i ,j=1

|{K1 −K0}i ,j |p, p > 0.
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Criteria for exact designs

Example setup

▶ X = [0, 10]2, grid size: 25× 25.
▶ Rival models: Matérn family (σ2 = 1):

▶ model 0: Matérn 3/2
▶ model 1: Matérn 5/2

▶ We consider discrimination designs only for fixed parameters
(locally optimum designs).

▶ Find inverse length-scales θ0 and θ1 where both models agree
most:
▶ Take θ0 = 1 in the first kernel, adjust the parameter in the

second kernel minimizing Φ1, Φ2, ΦF , and ΦKL for the design
X625.

▶ Results: θ1 = 1.0047, 1.0285, 1.0955, 1.3403, resp.
▶ We have finally used the setting θ = (1, 1.07).
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Criteria for exact designs

Selection of parameters

Φ1, Φ2, ΦF , ΦKL as functions of θ for an equally-spaced 11-point design.
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Criteria for exact designs

Covariance functions at selected parameters
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Left: Plot of the Matérn covariance functions.

Right: Absolute difference of covariance functions at distance x .
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Criteria for exact designs

Exact designs for static criteria

ΦKL ΦF

Φ1 Φ2
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Criteria for exact designs

Performance of criteria in simulation study
▶ For each design of size n, N = 100 independent sets of n observations are

simulated from the “true” model 0.

▶ The hit rate is computed as the proportion of samples where the
likelihood of model 0 is larger than the likelihood of model 1.

▶ The same is repeated for the case where model 1 is the correct model.

▶ The two hit rates are averaged to obtain the average hit rates.

Average hit rate

Design size 5 6 7 8 9 10 20 30 40 50

ΦF 0.580 0.625 0.620 0.625 0.670 0.715 0.795 0.900 0.925 0.950

Φ1 0.525 0.520 0.555 0.540 0.550 0.610 0.725 0.890 0.910 0.920

Φ2 0.525 0.520 0.555 0.540 0.550 0.610 0.715 0.860 0.890 0.910

ΦKL 0.580 0.625 0.620 0.625 0.670 0.715 0.795 0.895 0.925 0.955
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Criteria for approximate designs

Design measure version of Φp criterion

▶ Defining ξn as the empirical measure on the points in Xn,
ξn = (1/n)

∑n
i=1 δxi , one can write

Φp [K0,K1](Xn) = n2 ϕp [K0,K1](ξn),

where

ϕp [K0,K1](ξ) =

∫
X 2

|K1(x , x
′)− K0(x , x

′)|p dξ(x)dξ(x ′).
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Criteria for approximate designs

Necessary condition for optimality

Theorem

If the probability measure ξ∗ on X maximises ϕp [K0,K1](ξ), then

∀x ∈ X ,

∫
X
|K1(x , x

′)− K0(x , x
′)|p dξ∗(x ′) ≤ ϕp [K0,K1](ξ

∗).

Moreover,
∫
X |K1(x , x

′)− K0(x , x
′)|p dξ∗(x ′) = ϕp [K0,K1](ξ

∗) for
ξ∗-almost every x ∈ X .
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Criteria for approximate designs

Simplified problem with explicit solution for optimum
▶ Let Ki (x , x

′) = Ψi (∥x − x ′∥), i = 0, 1, and
ψ(t) = |Ψ1(t)−Ψ0(t)|, t ∈ R+.

▶ Then ϕp(ξ) =

∫
X 2

ψ(∥x − x ′∥)p dξ(x)dξ(x ′).

▶ Consider the extreme case ψ = ψ∗ defined by

ψ∗(t) =

{
1 if t = ∆,
0 otherwise.

▶ Since ψ∗(t)
p = ψ(t)p for any p > 0, we only need to consider p = 1.

Theorem

When ψ = ψ∗ and X ⊂ Rd is large enough to contain a regular d
simplex with edge length ∆, any measure ξ∗ allocating weight 1/(d + 1)
at each vertex of such a simplex maximises ϕ1(ξ), and
ϕ1(ξ

∗) = d/(d + 1).

Markus Hainy, JKU 15/21
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Criteria for approximate designs

Are results for ψ = ψ∗ generalisable?

▶ The results for ψ = ψ∗ do not generalise to the general
function ψ(t) = |Ψ1(t)−Ψ0(t)|.

▶ Even if p → ∞, one can show that one can always find a
better design than ξ∗, given the design space is large enough.

▶ However, the simplex design might be close to optimal (at
least for high p).
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Criteria for approximate designs

Illustration of directional derivative

Surface plots of directional derivatives:
Left: K0 = K0,1, K1 = K1,1.07 (∆ ≃ 1.92), p = 2.

Right: K0 = K0,1, K1 = K1,1 (∆ ≃ 0.7), p = 10.
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Criteria for approximate designs

Numerical optimisation
Two-step approach:

1. Run Fedorov-Wynn algorithm (Fedorov, 1971; Wynn, 1970) for 1000 iterations
using directional derivatives from necessary condition on a dense regular grid.

2. Run continuous optimisation algorithm for coordinates and design weights
starting from design found in step 1.
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Left: The optimal measure for ϕ2. Right: The optimal measure for ϕ10. θ1 = 1.07.
The edge lengths of the triangles are ∆ ≃ 1.92.
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Sequential/incremental designs
We also compared the static criteria to the following construction
methods:
▶ Sequential design:

put next observation(s) where symmetrized KL divergence
between predictive distributions of the models differs most.

▶ Incremental design:
▶ Incrementally build design by putting next point where

(normalised) differences between the prediction errors of the
two models are largest.

▶ Alternatively use symmetrized KL divergence (cond. on current
design).

▶ Theoretical investigations:
▶ prediction-based and KL criteria tend to behave differently and

depend on covering radius (CR) relative to correlation length.
▶ KL divergence sometimes clearly better suited for

discrimination (remains positive with decreasing CR).
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Conclusion

▶ Introducing a new family of criteria which are simple to
compute and allow for a formulation in terms of approximate
design measures.

▶ In our examples, they lead to marginally worse performance
than symmetrized KL divergence.

▶ For large p, designs with d + 1 support points placed on the
vertices of a simplex are often (close to) optimal for the new
criteria, depending on the size of the design space.

▶ Not considered yet: behaviour under parameter uncertainty.
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