About c- and D-optimal dosefinding designs for bivariate outcomes

Frank Miller, Department of Computer and Information Science, Linköping University
Department of Statistics; Stockholm University
mODa 13, Southampton, July 10, 2023

Efficacy-safety-models

- Risk-benefit consideration often important for dose-finding
$>$ Consider both an efficacy and safety outcome for planning the design
- For patient $i, i=1, \ldots, n$, we observe:

$$
\binom{Y_{E i}}{Y_{S i}}=\binom{f\left(\boldsymbol{\theta}_{E}, x_{i}\right)}{f\left(\boldsymbol{\theta}_{S}, x_{i}\right)}+\binom{\epsilon_{E i}}{\epsilon_{S i}}
$$

with regression function f depending on dose x_{i};

$$
\left(\epsilon_{E i}, \epsilon_{S i}\right)^{\mathrm{T}} \sim N(0, \boldsymbol{\Sigma}), \quad \operatorname{Corr}\left(\epsilon_{E i}, \epsilon_{S i}\right)=\rho
$$

Efficacy-safety-models

- Emax-Smax-model: $f(\boldsymbol{\theta}, x)=\theta_{1}+\frac{\theta_{3} x}{x+\theta_{2}}$,

$$
\boldsymbol{\theta}_{\boldsymbol{E}}=\left(E_{0}, E D_{50}, E_{\max }\right), \boldsymbol{\theta}_{\boldsymbol{S}}=\left(S_{0}, S D_{50}, S_{\max }\right)
$$

- Further models of Emax-type:

- Michaelis-Menten model: $E_{0}=S_{0}=0$
dose x
- Placebo-effect model: $E_{\max }=S_{\max }=1$
- One-parameter model: $E_{0}=S_{0}=0, E_{\max }=S_{\max }=1$, i.e. $f\left(E D_{50}, x\right)=x /\left(x+E D_{50}\right), f\left(S D_{50}, x\right)=x /\left(x+S D_{50}\right)$

Optimal design

- Design

$$
\xi=\left(\begin{array}{llll}
x_{1} & x_{2} & \ldots & x_{n} \\
w_{1} & w_{2} & \ldots & w_{n}
\end{array}\right)
$$

with doses $x_{i} \in[0, \infty]$ (unrestricted design space); $w_{i}>0, \sum_{i=1}^{n} w_{i}=1$

- Optimize standardized information matrix

$$
\boldsymbol{M}(\xi)=\sum_{i=1}^{n} w_{i} \boldsymbol{M}\left(\xi_{x_{i}}\right)
$$

with

$$
\boldsymbol{M}\left(\xi_{x}\right)=\left(\frac{\partial \boldsymbol{h}(x)}{\partial \boldsymbol{\theta}}\right)^{T} \boldsymbol{\Sigma}^{-1}\left(\frac{\partial \boldsymbol{h}(x)}{\partial \boldsymbol{\theta}}\right) \quad \begin{aligned}
& \boldsymbol{\theta}=\left(\boldsymbol{\theta}_{E}, \boldsymbol{\theta}_{S}\right), \\
& \boldsymbol{h}(\boldsymbol{\theta}, x)=\left(f\left(\boldsymbol{\theta}_{E}, x\right), f\left(\boldsymbol{\theta}_{\boldsymbol{S}}, x\right)\right)
\end{aligned}
$$

- We are interested in locally D- and c-optimal designs

Log-transformation of dose-scale

- $f\left(\boldsymbol{\theta}_{E}, x\right)=E_{0}+\frac{E_{\max } x}{x+E D_{50}}, f\left(\boldsymbol{\theta}_{S}, x\right)=S_{0}+\frac{s_{\max } x}{x+S D_{50}}$
- Log-transform: $y=\log (x)$ and $a_{E}=\log \left(E D_{50}\right), a_{S}=\log \left(S D_{50}\right)$
- $\tilde{f}\left(\theta_{E}, y\right)=E_{0}+\frac{E_{\max }}{1+\exp \left(-y+a_{E}\right)}, \tilde{f}\left(\boldsymbol{\theta}_{S}, y\right)=S_{0}+\frac{S_{\max }}{1+\exp \left(-y+a_{S}\right)}$

dose x

log-dose y

Symmetric designs

Theorem:

Unrestricted design space $[-\infty, \infty]$ on log-scale; model: one-parameter, placebo effect, or Emax-Smax. There is a D-optimal design which is symmetric
 around
$y_{M}=\log \left(\sqrt{E D_{50} S D_{50}}\right)=\frac{a_{E}+a_{S}}{2}=\left(\log \left(E D_{50}\right)+\log \left(S D_{50}\right)\right) / 2$.

Result valid also for c-optimality with \mathbf{c} for inference on $a_{E}+a_{S}$ or $a_{S}-a_{E}$ ($a_{S}-a_{E}$ corresponds to the therapeutic index of a drug: $T I=\frac{S D_{50}}{E D_{50}}(\geq 1)$)

The one-parameter model

Theorem (Tsirpitzi \& Miller, 2021): Let $\boldsymbol{c}=\binom{1}{1}, \boldsymbol{\Sigma}=\left(\begin{array}{ll}1 & \rho \\ \rho & 1\end{array}\right)$:

$$
\begin{aligned}
& f\left(E D_{50}, x\right)=\frac{x}{x+E D_{50}} \\
& f\left(S D_{50}, x\right)=\frac{x}{x+S D_{50}} \\
& T I=\frac{S D_{50}}{E D_{50}}
\end{aligned}
$$

- If $T I \leq 4 /\left(-\rho+3-\sqrt{\rho^{2}-6 \rho+5}\right)^{2}$, the one-point design in $x_{M}=\exp \left(y_{M}\right)=\sqrt{E D_{50} S D_{50}}$ is c-optimal,
- Otherwise, following two-point design is c-optimal:

$$
\left(\begin{array}{cc}
\exp \left(y_{M}-\delta\right) & \exp \left(y_{M}+\delta\right) \\
1 / 2 & 1 / 2
\end{array}\right)
$$

an algebraic expression for $\delta>0$ is given by Tsirpitzi \& Miller (2021)

The Emax-Smax model

Theorem:

$$
\begin{aligned}
& f\left(\boldsymbol{\theta}_{E}, x\right)=E_{0}+\frac{E_{\max } x}{x+E D_{50}}, \\
& f\left(\boldsymbol{\theta}_{S}, x\right)=S_{0}+\frac{S_{\text {max }} x}{x+S D_{50}} \\
& T I=\frac{S D_{50}}{E D_{50}}
\end{aligned}
$$

- For $T I=\frac{S D_{50}}{E D_{50}}>1$ close to 1, a 3-point design is D-optimal:

$$
\left(\begin{array}{ccc}
0 & x_{M} & \infty \\
1 / 3 & 1 / 3 & 1 / 3
\end{array}\right) \text { with } x_{M}=\exp \left(y_{M}\right)=\sqrt{E D_{50} S D_{50}}
$$

- For larger TI, the D-optimal design is a 4-point design and has the form

$$
\left(\begin{array}{cccc}
0 & \exp \left(y_{M}-\delta\right) & \exp \left(y_{M}+\delta\right) & \infty \\
\frac{1}{2}-w & w & w & \frac{1}{2}-w
\end{array}\right)
$$

with some $w \in(0,1 / 2), \delta \geq 0$

Restricted design spaces with left or right limits

- Unrestricted design space $[0, \infty]$ is a theoretical construct
- For the Emax-Smax model, we can transform a model on a restricted design space $[\mathrm{O}, \mathrm{R}]$ or $[\mathrm{L}, \mathrm{R}]$ to a model on an unrestricted space

Transformation: Additive shift

- Additive shift-transformation $w=x-L$ (dose in addition to L)
- Transforms design space $[\mathrm{L}, \infty]$ to $[0, \infty]$
- We obtain a new Emax model: $f\left(\boldsymbol{\theta}_{E}, x\right)=E_{0}+\frac{E_{\max } x}{x+E D_{50}}=\widetilde{E_{0}}+\frac{\widetilde{E_{\max }} W}{W+\widetilde{E D_{50}}}$
- It has parameters $\widetilde{E D_{50}}=L+E D_{50}$, $\widetilde{E_{0}}=E_{0}+\frac{E_{\text {max }} L}{L+E D_{50}}$,
$\widetilde{E_{\text {max }}}=E_{\text {max }}-\frac{E_{\text {max }} L}{L+E D_{50}}$

Transformation: Reciprocal

- Reciprocal transformation $z=\frac{1}{x}$
- Transforms design space $[0, R]$ to $\left[\frac{1}{R}, \infty\right]$
- We obtain a new Emax model: $E_{0}+\frac{E_{\max } x}{x+E D_{50}}=\widetilde{E_{0}}+\frac{\widetilde{E_{\max }}{ }^{2}}{z+\widetilde{E D_{50}}}$
- It has parameters $\widetilde{E D_{50}}=1 / E D_{50}$,
$\widetilde{E_{0}}=E_{0}+E_{\max }$,
$\widetilde{E_{\max }}=-E_{\max }$

D-optimality for Emax-Smax model and restricted design space $[\mathbf{0}, \mathbf{R}]$

- D-optimal 3-point design is $\left(\begin{array}{ccc}0 & x_{M} & R \\ 1 / 3 & 1 / 3 & 1 / 3\end{array}\right)$ with $x_{M}=\left\{\sqrt{\left(\frac{1}{S D_{50}}+\frac{1}{R}\right)\left(\frac{1}{E D_{50}}+\frac{1}{R}\right)}+\frac{1}{R}\right\}^{-1}$
- For $T I=\frac{S D_{50}}{E D_{50}}>1$ closeto 1, this 3-point design is D-optimal

Another equivalent expression is given by Schorning et al. (2017)

- For larger TI, $\left(\begin{array}{cccc}0 & x_{2} & x_{3} & R \\ \frac{1}{2}-w & w & w & \frac{1}{2}-w\end{array}\right)$ is D-optimal with

$$
x_{2}=\left\{\sqrt{\left(\frac{1}{S D_{50}}+\frac{1}{R}\right)\left(\frac{1}{E D_{50}}+\frac{1}{R}\right)} * \psi+\frac{1}{R}\right\}^{-1}, x_{3}=\left\{\sqrt{\left(\frac{1}{S D_{50}}+\frac{1}{R}\right)\left(\frac{1}{E D_{50}}+\frac{1}{R}\right)} / \psi+\frac{1}{R}\right\}^{-1}
$$

for some $w \in\left(0, \frac{1}{2}\right)$ and some $\psi>1$

D-optimality for Emax-Smax model and restricted design space [0, R]

- When is a design with 3 or 4 support points D-optimal?
- D-optimal: 3-point if TI or design space [$\mathrm{O}, \mathrm{R}]$ small, 4 -point if TI and $[\mathrm{O}, \mathrm{R}]$ are larger

Summary

- We could derive algebraic results for D - and c-optimal designs in efficacy-safety models
- Those show the important influence parameters
- Transformations for Emax-type-models are useful

References

- Schorning K, Dette H, Kettelhake K, Wong KW, Bretz F (2017). Optimal designs for active controlled dose-finding trials with efficacy-toxicity outcomes. Biometrika, 107, 1003-1010.
- Tsirpitzi R, Miller F (2021). Optimal dose-finding for efficacy-safetymodels. Biometrical Journal, 63, 1185-1201.

Appendix

Number of support points of the optimal design

- How many support points are sufficient to ensure that we find an optimal design among them?

Model	Parameters	Arbitrary criterion	c-opti- mality
One-parameter	$\left(E D_{50}, S D_{50}\right)$	4	$\mathbf{2}^{* *}$
Placebo-effect	$\left(E_{0}, E D_{50}, S_{0}, S D_{50}\right)$	5	4
Michaelis-Menten	$\left(E D_{50}, E_{\max }, S D_{50}, S_{\max }\right)$	5^{*}	$4^{* *}$
Emax-Smax	$\left(E_{0}, E D_{50}, E_{\max }, S_{0}, S D_{50}, S_{\max }\right)$	5^{*}	5^{*}
${ }^{* S}$ Schorning et al. (2017)	${ }^{* *}$ Tsirpitzi \& Miller (2021)		

Optimal design

- Design

$$
\xi=\left(\begin{array}{llll}
y_{1} & y_{2} & \ldots & y_{n} \\
w_{1} & w_{2} & \ldots & w_{n}
\end{array}\right)
$$

- Weight $w_{i}>0$ for the doses $y_{i} \in[-\infty, \infty]$ with $\sum_{i=1}^{n} w_{i}=1$
- Standardized information matrix $M(\xi)=\sum_{i=1}^{n} w_{i} M\left(\xi_{y_{i}}\right)$ with

$$
\begin{aligned}
& M\left(\xi_{y}\right)=Q_{y}^{T} \Sigma^{-1} Q_{y}, \\
& Q_{y}=\left(\begin{array}{cccccc}
1 & h_{E}(y) & E_{\max } d_{E}(y) & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & h_{S}(y) & S_{\max } d_{S}(y)
\end{array}\right) \\
& h_{E}(y)=\left\{1+\exp \left(-y+a_{E}\right)\right\}^{-1}, d_{E}(y)=h_{E}(y)\left(1-h_{E}(y)\right) \\
& h_{S}(y)=\left\{1+\exp \left(-y+a_{S}\right)\right\}^{-1}, d_{S}(y)=h_{S}(y)\left(1-h_{S}(y)\right)
\end{aligned}
$$

- We want to have a design ξ such that $M(\xi)$ is "large"

D-optimality for Emax-Smax model and restricted design space [0, R]

- D-optimal 3-point design is $\left(\begin{array}{ccc}0 & x_{M} & R \\ 1 / 3 & 1 / 3 & 1 / 3\end{array}\right)$ with $x_{M}=\frac{\sqrt{E D_{50} S D_{50}\left(R+E D_{50}\right)\left(R+S D_{50}\right)}-E D_{50} S D_{50}}{R+E D_{50}+S D_{50}}$ (Schorning et al., 2017)
- Note: $x_{M}=\left\{\sqrt{\left(\frac{1}{S D_{50}}+\frac{1}{R}\right)\left(\frac{1}{E D_{50}}+\frac{1}{R}\right)}+\frac{1}{R}\right\}^{-1}$

Result for the placebo-effect model

- $f\left(\theta_{E}, x\right)=E_{0}+\frac{x}{x+E D_{50}}, f\left(\theta_{S}, x\right)=S_{0}+\frac{x}{x+S D_{50}}$
- Theorem:

The D-optimal design for the design space $y \in[-\infty, \infty)$ has the form

$$
\left(\begin{array}{ccc}
-\infty & \exp \left(y_{S}-\delta\right) & \exp \left(y_{S}+\delta\right) \\
1-2 w & w & w
\end{array}\right)
$$

with $y_{S}=\log \left(\sqrt{E D_{50} S D_{50}}\right)$ and some $w \in\left(0, \frac{1}{2}\right), \delta \geq 0$.

D-optimality for Emax-Smax model and restricted design space [0, R]

- When is a design with 3 or 4 support points D-optimal?
rho $=0$
rho $=0.5$

Number of support points of the optimal design

- How many support points are sufficient to ensure that we find an optimal design among them?

Model	Parameters	Arbitrary criterion	c-opti- mality
One-parameter	$\left(E D_{50}, S D_{50}\right)$	4	$\mathbf{2}^{* *}$
Placebo-effect	$\left(E_{0}, E D_{50}, S_{0}, S D_{50}\right)$	5	4
Michaelis-Menten	$\left(E D_{50}, E_{\max }, S D_{50}, S_{\max }\right)$	5^{*}	$4^{* *}$
Emax-Smax	$\left(E_{0}, E D_{50}, E_{\max }, S_{0}, S D_{50}, S_{\max }\right)$	5^{*}	5^{*}
${ }^{* S c h o r n i n g ~ e t ~ a l . ~(2017) ~}$	${ }^{* *}$ Tsirpitzi \& Miller (2021)		

- Optimal designs depend not on $E_{0}, S_{0}, E_{\max }, S_{\max }$ but on $E D_{50}, S D_{50}$ and ρ
- We will derive locally optimal designs which can be applied sequentially

