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Model Discrimination

Setting
We want to describe a phenomenon by a model f(x, 8) with design variables x and parameters 6.

Issue

We have two plausible models f; (x,8;) and f,(x, 8;). We want more experiments to
distinguish/discriminate f; and f,

Goal

xl nnu xn

= Determine a experimental design & = {W1 w
T n

} where

the models should differ the most at the chosen design points x; € X € R%.
the weights w; € [0,1] should state the importance of the corresponding design point.
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T-Criterion

ldea
= Fix one model - true model f; (x) = f1(x, 6;)
= Fit alternative model £, (x, 8,) to f; as well al possible

2.5 1

2.0 1

= Take design points where models have the largest difference 151
T-criterion 051
" . 2 0.0 —» . . . —$— . : "
E = argmax min f [fl (x) — f2 (x, 82)] E(dx) -1.00 -0.75 -0.50 -0.25 000 025 050 075 1.00
§eB 0,€0, X

Example: linear model against
true exponential model

The following ideas work For multi-response models,

analogously for the KL- use Ify(x) — f(x, 815
criterion

\

Slide 3 05.10.23 © Fraunhofer ITWM % Fraunhofer

ITWM



Semi-Infinite Programming Alternatingly solving upper- and lower-

level problem solves SIP

—> Blankenship & Falk algorithm
(adaptive discretization)

Semi-infinite program (SIP)

max f(x)

x€ER4

s.t. g(x,y) =0, forally €Y

Upper-level problem: Compute new approximate (infeasible) solution i by solving the discretized problem given a
finite discretization Y c Y:

SIP(Y): max f(x)

xeRA

s.t. glx,y) =0, forally €Y

Lower-level problem: Determine constraint, or index variable y, with highest violation for a fixed solution x:

Q(x): min g(x,y)
yeY

\i
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T-Criterion as Semi-Infinite Program

Maximin problems as SIP

A problem of the form max Hg}l f(x,y) can be formulated as a semi-infinite program (epigraph formulation)
xeX y

max t
teRrR

xeX

s.t. f(x,y)=t, VyeyY

T-criterion as SIP

max t
teR
$EE Kuczewski (2006) Computational aspects of discrimination
2 between models of dynamic systems. PhD thesis
s.t. [fi(x) — f2(x,682)]* &(dx) = t, V6, € O, e
Duarte et al. (2014) A semi-infinite programming based
algorithm for determining T-optimum designs for model
discrimination
—
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Computing T-optimal Designs

Previous algorithms to compute T-optimal designs

= \ertex Direction Method

Atkinson and Fedorov (1975) The design of experiments for discriminating between two rival models.

= Semi-infinite programming
Kuczewski (2006) Computational aspects of discrimination between models of dynamic systems. PhD thesis

Duarte et al. (2014) A semi-infinite programming based algorithm for determining T-optimum designs for model discrimination

= Adaptively discretizes the parameter space

= Dette et al.

Dette et al. (2015) Bayesian T-optimal discriminating designs
= Adaptively discretizes the design space
= Uses linearization to compute optimal weights in each iteration

Very robust but
slow convergence

Robust, but solving
upper level to global
optimality is very hard

Very fast (if applicable)

but unreliable
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New SIP Ansatz to Compute T-optimal Designs

Simulatneous optimization

- W.r.t. x and w
General T-criterion

max min j [f1(x) — f2(x;,62)]7 €(dx) = max min Z wi[fi(x) — fo(x, 0,)]

W1,..,WwNE[0,1]
Iwll1=1

Discretized T-criterion

w=0 926@2

N
max min Z w;lf1(x) — fo(x;,85)]%,  for fixed Xy = {xq, ..., xn}
i=1

lw|l;=1
7
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2-ADAPT-MD Algorithm

Given an initial grid of design points Xy = {x4, ..., x5} and an initial discretized parameter set (3)50).

2-ADAPT-MD: WHILE (convergence criterion not met) DO Linear program
= Find new design on X, c X (DISC_MD): WHILE (convergence criterion not met) DO

Least-squares
Compute new weights: w) = argmax min SN wilfilx) — fo(xi, 02)1? problem

.

w=0

2
Iwll1=1

Update parameter discretization:  85% = argmin XN, w®[f, (x)) — £, (x;,6,)]1%, 05+ == 6% u {92(5)}

926@2

) 2
= Find new design point: xWN*+D) = argmax [fl(x) —f2 (x HZ(N))] , Xyi1 = Xy U {x(V0}

xeX

Return: (approximate) optimal design é* on X.

(General) non-linear

program

\
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For more details, see Mogalle et al. (2023)
CO nve rge nce Of t h e Z_A DA PT— M D Computing T-optimal Desg/gns via Nested Semi-

Infinite Programming and Twofold Adaptive
Discretization

Assumptions on
= X + @ Is comg
=0 # Qiscom
= f s continud

= K such that T ((

&-T-optimal Designs
We call a design & e-T-optimal if m&%?u/)(x, §) =% 2l design &7,
X

Convergence of 2-ADAPT-MD

= DISC-MD converges to T-optimal design on X™ c X = stops with e-T-opti
= 2-ADAPT-MD converges to a 2v/Ke-T-optimal design & on X

\
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Numerical Example 1: Michaelis-Menten Model

Modified-Michaelis-Menten-Modell (MMM) vs. Michaelis- 14 { — modified Michaclis Menten
Menten_Mode" (MM) 124 * optimal design points
x 0.8 1
fl(x) == m + le VS. fz(x (V K)) = K_-I-x 0.6 4
=X =[1073,5.0]
= (V,K) € ®, = [1073,5]x[1073, 5] i I e | o
VM reference model s
9.64 - 10— 1.1805 - 10— 4131 s fitted MM alternative model
Dette et al 5.02-107° 1.1853 1073 1.40s
SIP 4.75 - 1076 1.1820-1073  16511.88s bad performance due to global
_ ~ optimization in upper level
2-ADAPT-MD 3.46-107° 1.1854 - 1073 6.91s
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Numerical Example 2: Consecutive Reaction

Partially reversible vs. irreversible consecutive reaction

= |rreversible reaction: A -k B Ska ¢ = ODE system:
B} , . . .k k d[A]
Partially reversible reaction: A= B2 C ke —k,[A]™ + k3 [B]"s
L . . d[B
= ([Alo, [Blo, [Cly, t) € X - grid with 135 design points % = k,[A]™ — k,[B]™2 — k;[B]"3
" (ky, k2,n1,m3) € O dc[if] = k,[B]™

9.90-107° 1.9275- 107 2818.71's All design points have to be
Dette et al — — - evaluated in every iteration
SIP 404-10"°  1.9322-1073 1204251 s—
2-ADAPFMD 131106 1.9322-1073 345305 Nl s o s osieth O Cfesiig [olifs
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Benefits of New Formulation

Advantages of 2-ADAPT-MD algorithm

= Run times are competitive with state-of-the-art algorithms

= Increased numerical stability
Our (subjective) experience: Our algorithm works reliably, while others have their little problems
Bad points in a discretization do not hurt

= Better structure
Each sub-problem is solved whenever needed

One could use heuristics to augment the discretizations

\
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Computing T-optimal Designs o to order these <ubs
L problems efficiently?

ALGORITHM: WHILE (convergence criterion not met) DO
= Update parameters:

6% = argmin f 160 = fo(x, 81 £ (dx)

02€0;
= Find new design point:

x5+ = argmax lf1(x) f2 ( ’9"2(5))]2

xeX
= Update design:
Vertex Direction Method:
Atkinson and Fedorov (1975) The design of experi-
ments for discriminating between two rival models. €S+1 = (1 — as)55 + asf(x(s"'l))
Dette et al:
Dette et al (2015) Bayesian T- n
optimal discriminating designs. A (s) T ~(s) 2
Wsy1 = argr:z)axz Wi lf1 (x;) — f> (xi: 0, ) — B(w) D92f2 (xi: 0, )]
wz

Iwll;=1 =1

o

Linearization around
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Important Properties of the T-Criterion

S First-order methods converge

to global optimum

Concavity

The T-criterion is concave, i.e. for a € [0,1]:

T(A-aé+ad)z@-a)TE +aT(f)

Equivalence Theorem (assuming 8,(&*) is a unique minimizer)

= A design &* is T-optimal if and only if

Y(x, &) = ¢ (x, 92(5*)) —T(&*) <0, forallx € X

= (x, 92(5*)) —T(&*) =0, forall x € supp(¢™)

convergence
criterion
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—0.07 1 —— directional derivative
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Example: directional derivative y of

linear model against true exponential
model

Kuczewski (2006) Computational aspects of discrimination
between models of dynamic systems. PhD thesis
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Convergence of DISC-MD Subroutine

Convergence of DISC-MD Procedure

Let

0" be a finite discretization of 0,
£B) be a reqular design in each iteration (least-squares problem has unique minimizer).

= Then, every accumulation point of the sequence of solutions (& (S))SEN of the DISC-MD routine is a T-optimal
solution on X,,.

Proof (Sketch)
Show that the initial feasible region

F (@go)) = {(W, t) (S RN+1 | t < Z?I:l Wi(p(xl', 92),‘9’92 € @;O)’ Il_V=1 wW; = 1, Wi = O}

is compact (Lopez and Still, 2007).

\
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Convergence of 2-ADAPT-MD Algorithm

Assumption

K is bound on second

Choose K such that T ((1 — )¢ + agf) >T(E) +af &) dé —a’K. (directional) derivative

&-T-optimal Designs
We call a design & e-T-optimal if mg)?u/)(x, §) <e.Then, also T(§) = T(é*) — & for a T-optimal design &*.
X

Convergence of 2-ADAPT-MD

Let
DISC-MD returns e-T-optimal design €™ on X c X

= Then, a subsequence of (intermediate) solutions (é ("1)) oy COnverges to a 2v/Ke-T-optimal design & on X.
j€E

\i
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Convergence of 2-ADAPT-MD Algorithm

Convergence of 2-ADAPT-MD

Let
DISC-MD returns e-T-optimal design €™ on X c X

= Then, a subsequence of (intermediate) solutions (f ("1)) oy COnverges to a 2v/Ke-T-optimal design & on X.
j€E

Proof (Sketch)
= There is a subsequence of solutions which converges weakly to some & (due to convergence of objective value)

= The weak limit € is a 2vKe-T-optimal solution.
Assume contrary, i.e. max Y(x, &) = 2VKe + € from some iteration onwards.
X

Consider optimal line search = we improve the (optimal) objective value by at least (¢)?/4K in every iteration
Contradiction to T(&*) to being bounded.

\
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