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Model Discrimination
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Setting   
We want to describe a phenomenon by a model 𝑓(𝑥, 𝜃) with design variables 𝑥 and parameters 𝜃.

Issue   
We have two plausible models 𝑓!(𝑥, 𝜃!) and 𝑓"(𝑥, 𝜃").

Goal

§ Determine a experimental design 𝜉 =
𝑥! … 𝑥#
𝑤! … 𝑤# where

§ the models should differ the most at the chosen design points 𝑥$ ∈ 𝑋 ⊆ ℝ%.
§ the weights 𝑤$ ∈ [0,1] should state the importance of the corresponding design point. 
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We want more experiments to 
distinguish/discriminate 𝑓! and 𝑓"



T-Criterion
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Idea
§ Fix one model à true model 𝑓! 𝑥 = 𝑓!(𝑥, 𝜃&)
§ Fit alternative model 𝑓" 𝑥, 𝜃"  to 𝑓! as well al possible
§ Take design points where models have the largest difference

T-criterion

𝜉∗ = argmax
(∈*

min
+!∈,!

:
-
𝑓! 𝑥 − 𝑓" 𝑥, 𝜃" " 𝜉(𝑑𝑥)
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Example: linear model against 
true exponential model

The following ideas work 
analogously for the KL-
criterion

For multi-response models, 
use 𝑓! 𝑥 − 𝑓" 𝑥, 𝜃" "

"



Semi-Infinite Programming
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Semi-infinite program (SIP)
max
.∈ℝ"

𝑓(𝑥)

𝑠. 𝑡. 𝑔 𝑥, 𝑦 ≥ 0, for all 𝑦 ∈ 𝑌

Upper-level problem: Compute new approximate (infeasible) solution �̅� by solving the discretized problem given a 
finite discretization �̇� ⊂ 𝑌:

𝑆𝐼𝑃 �̇� : max
.∈ℝ"

𝑓 𝑥

𝑠. 𝑡. 𝑔 𝑥, 𝑦 ≥ 0, for all 𝑦 ∈ �̇�

Lower-level problem: Determine constraint, or index variable 𝑦, with highest violation for a fixed solution �̅�:

    𝑄 �̅� : min
0∈1

𝑔(�̅�, 𝑦)
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Alternatingly solving upper- and lower-
level problem solves SIP

à Blankenship & Falk algorithm
    (adaptive discretization)



Maximin problems as SIP

A problem of the form max
.∈-

min
0∈1

𝑓(𝑥, 𝑦) can be formulated as a semi-infinite program (epigraph formulation)

max
&∈ℝ
.∈-

𝑡

𝑠. 𝑡. 𝑓 𝑥, 𝑦 ≥ 𝑡, ∀𝑦 ∈ 𝑌

T-criterion as SIP

max
&∈ℝ
(∈*

𝑡

𝑠. 𝑡. ∫- 𝑓! 𝑥 − 𝑓" 𝑥, 𝜃" " 𝜉 𝑑𝑥 ≥ 𝑡, ∀𝜃" ∈ Θ"

T-Criterion as Semi-Infinite Program
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Kuczewski (2006) Computational aspects of discrimination 
between models of dynamic systems. PhD thesis

Duarte et al. (2014) A semi-infinite programming based 
algorithm for determining T-optimum designs for model 
discrimination



Computing T-optimal Designs
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Previous algorithms to compute T-optimal designs

§ Vertex Direction Method

§ Semi-infinite programming

§ Adaptively discretizes the parameter space

§ Dette et al.

§ Adaptively discretizes the design space
§ Uses linearization to compute optimal weights in each iteration
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Very robust but 
slow convergenceAtkinson and Fedorov (1975) The design of experiments for discriminating between two rival models.

Very fast (if applicable) 
but unreliable

Dette et al. (2015) Bayesian T-optimal discriminating designs

Kuczewski (2006) Computational aspects of discrimination between models of dynamic systems. PhD thesis

Duarte et al. (2014) A semi-infinite programming based algorithm for determining T-optimum designs for model discrimination

Robust, but solving 
upper level to global 
optimality is very hard



New SIP Ansatz to Compute T-optimal Designs
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General T-criterion

max
(∈*

min
+!∈,!

:
-
𝑓! 𝑥$ − 𝑓" 𝑥$ , 𝜃" "	𝜉 𝑑𝑥 = max

.#,…,.$∈-
4#,…,4$∈ 5,!

4 #6!

min
+!∈,!

S
$6!

7

𝑤$ 𝑓! 𝑥 − 𝑓" 𝑥, 𝜃" "

Discretized T-criterion

max
485
4 #6!

min
+!∈,!

S
$6!

7

𝑤$ 𝑓! 𝑥$ − 𝑓" 𝑥$ , 𝜃" ",	 for Tixed 𝑋7 = {𝑥!, … , 𝑥7}	
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Simulatneous optimization 
w.r.t. 𝑥 and 𝑤 

Linear w.r.t 𝑤



Given an initial grid of design points 𝑋7 = {𝑥!, … , 𝑥7} and an initial discretized parameter set Θ̇"
5 .

2-ADAPT-MD: WHILE (convergence criterion not met) DO

§ Find new design on 𝑿𝑵 ⊂ 𝑿 (DISC_MD): WHILE (convergence criterion not met) DO

§ Compute new weights:      𝑤 : = argmax
485
4 #6!

min
+!∈,̇!

%
∑$6!7 𝑤$ 𝑓! 𝑥$ − 𝑓" 𝑥$ , 𝜃" "

§ Update parameter discretization:     [𝜃"
: = argmin

+!∈,!
∑$6!7 𝑤$

: 𝑓! 𝑥$ − 𝑓" 𝑥$ , 𝜃" " , Θ̇"
:<! ≔ Θ̇"

: ∪ [𝜃"
:

§ Find new design point: 

Return: (approximate) optimal design 𝜉∗ on 𝑋.

§ Find new design point:     𝑥 7<! = argmax
.∈-

𝑓! 𝑥 − 𝑓" 𝑥, [𝜃"
7 "

, 𝑋7<! ≔ 𝑋7 ∪ 𝑥 7<!

2-ADAPT-MD Algorithm
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Linear program

Least-squares 
problem

(General) non-linear 
program



Convergence of the 2-ADAPT-MD
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Assumptions on model functions: Assume single-response models 𝑓: 𝑋×Θ → ℝ with 
§ 𝑋 ≠ ∅ is compact
§ Θ ≠ ∅ is compact and convex
§ 𝑓 is continuous w.r.t. 𝑥, 𝜃 ∈ 𝑋×Θ
§ 𝐾 such that 𝑇 1 − 𝛼 𝜉 + 𝛼 ̅𝜉 ≥ 𝑇 𝜉 + 𝛼 ∫-𝜓 𝑥, 𝜉 𝑑 ̅𝜉 − 𝛼"𝐾.

𝜺-𝑻-optimal Designs
We call a design 𝜉 𝜀-𝑇-optimal if max

.∈-
𝜓 𝑥, 𝜉 ≤ 𝜀. Then, also 𝑇 𝜉 ≥ 𝑇 𝜉∗ − 𝜀 for a T-optimal design 𝜉∗.

Convergence of 2-ADAPT-MD

§ DISC-MD converges to 𝑇-optimal design on 𝑋 # ⊂ 𝑋  à  stops with 𝜀-𝑇-optimal design 𝜉 #

§ 2-ADAPT-MD converges to a 𝟐 𝑲𝜺-𝑻-optimal design [𝜉 on 𝑋
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It converges

For more details, see Mogalle et al. (2023) 
Computing T-optimal Designs via Nested Semi-
Infinite Programming and Twofold Adaptive 
Discretization



Numerical Example 1: Michaelis-Menten Model
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Modified-Michaelis-Menten-Modell (MMM) vs. Michaelis-
Menten-Modell (MM)

 𝑓! 𝑥 = .
!<.

+ 0.1𝑥 vs.  𝑓" 𝑥, 𝑉, 𝐾 = =.
><.

	

§ 𝑋 = [10?@, 5.0]
§ 𝑉, 𝐾 ∈ Θ" = 10?@, 5 ×[10?@, 5]
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MMM reference model vs. 
fitted MM alternative model

Algorithm Accuracy T-Criterion Run Time

VDM 9.64 ⋅ 10?A 1.1805 ⋅ 10?@ 41.31 s

Dette et al 5.02 ⋅ 10?A 1.1853 ⋅ 10?@ 1.40 s

SIP 4.75 ⋅ 10?A 1.1820 ⋅ 10?@ 16511.88 s

2-ADAPT-MD 3.46 ⋅ 10?A 1.1854 ⋅ 10?@ 6.91 s

bad performance due to global 
optimization in upper level



Numerical Example 2: Consecutive Reaction
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Partially reversible vs. irreversible consecutive reaction

§ Irreversible reaction:  𝐴 →B# 𝐵 →B! 𝐶
§ Partially reversible reaction: 𝐴 ⇌B&

B# 𝐵 →B! 𝐶

§ 𝐴 5, 𝐵 5, 𝐶 5, 𝑡 ∈ 𝑋  à grid with 135 design points

§ 𝑘!, 𝑘", 𝑛!, 𝑛" ∈ Θ"
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§ ODE system:
𝑑[𝐴]
𝑑𝑡 = −𝑘! 𝐴 ## + 𝑘@ 𝐵 #&

𝑑[𝐵]
𝑑𝑡 = 𝑘! 𝐴 ## − 𝑘" 𝐵 #! − 𝑘@ 𝐵 #&

𝑑 𝐶
𝑑𝑡 = 𝑘" 𝐵 #!

Algorithm Accuracy T-Criterion Run Time

VDM 9.90 ⋅ 10?A 1.9275 ⋅ 10?@ 2818.71 s

Dette et al − − −
SIP 4.04 ⋅ 10?A 1.9322 ⋅ 10?@ 12042.51 s

2-ADAPT-MD 1.31 ⋅ 10?A 1.9322 ⋅ 10?@ 345.30 s

All design points have to be 
evaluated in every iteration

Take smaller subset of design points



Benefits of New Formulation
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Advantages of 2-ADAPT-MD algorithm

§ Run times are competitive with state-of-the-art algorithms

§ Increased numerical stability

§ Our (subjective) experience: Our algorithm works reliably, while others have their little problems

§ Bad points in a discretization do not hurt

§ Better structure 

§ Each sub-problem is solved whenever needed

§ One could use heuristics to augment the discretizations
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Thank you for your attention
—
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Computing T-optimal Designs
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ALGORITHM: WHILE (convergence criterion not met) DO
§ Update parameters:  

[𝜃"
: = argmin

+!∈,!
:
-
𝑓! 𝑥 − 𝑓" 𝑥, 𝜃" " 𝜉:(𝑑𝑥)

§ Find new design point:  

𝑥 :<! = argmax
.∈-

𝑓! 𝑥 − 𝑓" 𝑥, [𝜃"
: "

§ Update design:
§ Vertex Direction Method: 

𝜉:<! = 1 − 𝛼: 𝜉: + 𝛼:𝜉 𝑥 :<!

§ Dette et al:   

𝑤:<! = argmax
485
4 #6!

S
$6!

#

𝑤$ 𝑓! 𝑥$ − 𝑓" 𝑥$ , [𝜃"
: − 𝛽(𝑤)C𝐷+!𝑓" 𝑥$ , [𝜃"

: "
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How to order these sub-
problems efficiently?

Linearization around [𝜃"
:  

à 𝛽(𝑤) constructed to enforce good fit

Dette et al (2015) Bayesian T-
optimal discriminating designs.

Atkinson and Fedorov (1975) The design of experi-
ments for discriminating between two rival models.



Important Properties of the T-Criterion
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Concavity

The T-criterion is concave, i.e. for 𝛼 ∈ [0,1]:

𝑇 1 − 𝛼 𝜉 + 𝛼 ̅𝜉 ≥ 1 − 𝛼 𝑇 𝜉 + 𝛼 𝑇 ̅𝜉

Equivalence Theorem  (assuming [𝜃" 𝜉∗  is a unique minimizer)

§ A design 𝜉∗ is T-optimal if and only if 

𝜓 𝑥, 𝜉∗ ≔ 𝜑 𝑥, [𝜃" 𝜉∗ − 𝑇 𝜉∗ ≤ 0, for all 𝑥 ∈ 𝑋

§ 𝜑 𝑥, [𝜃" 𝜉∗ − 𝑇 𝜉∗ = 0, for all 𝑥 ∈ supp 𝜉∗
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Example: directional derivative 𝜓 of 
linear model against true exponential 
model 

First-order methods converge 
to global optimum

convergence 
criterion

Kuczewski (2006) Computational aspects of discrimination 
between models of dynamic systems. PhD thesis



Convergence of DISC-MD Subroutine
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Convergence of DISC-MD Procedure

Let

§ Θ̇"
5  be a finite discretization of Θ",

§ 𝜉 :  be a regular design in each iteration (least-squares problem has unique minimizer).

⟹ Then, every accumulation point of the sequence of solutions 𝜉 :
:∈ℕ of the DISC-MD routine is a T-optimal 

solution on 𝑋#.

Proof (Sketch)
Show that the initial feasible region

ℱ Θ̇"
5 = 𝑤, 𝑡 ∈ ℝ7<! 𝑡 ≤ ∑$6!7 𝑤$𝜑 𝑥$ , 𝜃" , ∀𝜃" ∈ Θ̇"

5 , ∑$6!7 𝑤$ = 1, 𝑤$ ≥ 0

is compact (Lopez and Still, 2007).
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Convergence of 2-ADAPT-MD Algorithm
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Assumption

Choose 𝐾 such that 𝑇 1 − 𝛼 𝜉 + 𝛼 ̅𝜉 ≥ 𝑇 𝜉 + 𝛼 ∫-𝜓 𝑥, 𝜉 𝑑 ̅𝜉 − 𝛼"𝐾.

𝜺-𝑻-optimal Designs
We call a design 𝜉 𝜀-𝑇-optimal if max

.∈-
𝜓 𝑥, 𝜉 ≤ 𝜀. Then, also 𝑇 𝜉 ≥ 𝑇 𝜉∗ − 𝜀 for a T-optimal design 𝜉∗.

Convergence of 2-ADAPT-MD

Let
§ DISC-MD returns 𝜀-𝑇-optimal design 𝜉 #  on 𝑋 # ⊂ 𝑋

⟹ Then, a subsequence of (intermediate) solutions 𝜉 #'
E∈ℕ

 converges to a 𝟐 𝑲𝜺-𝑻-optimal design [𝜉 on 𝑋.
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𝐾 is bound on second 
(directional) derivative



Convergence of 2-ADAPT-MD Algorithm
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Convergence of 2-ADAPT-MD

Let
§ DISC-MD returns 𝜀-𝑇-optimal design 𝜉 #  on 𝑋 # ⊂ 𝑋

⟹ Then, a subsequence of (intermediate) solutions 𝜉 #'
E∈ℕ

 converges to a 𝟐 𝑲𝜺-𝑻-optimal design [𝜉 on 𝑋.

Proof (Sketch)
§ There is a subsequence of solutions which converges weakly to some [𝜉 (due to convergence of objective value)
§ The weak limit [𝜉 is a 2 𝐾𝜀-𝑇-optimal solution.

§ Assume contrary, i.e.  max
.∈-

	𝜓 𝑥, 𝜉: ≥ 2 𝐾𝜀 + 𝜀′ from some iteration onwards. 

§ Consider optimal line search à we improve the (optimal) objective value by at least 𝜀F "/4𝐾 in every iteration
§ Contradiction to 𝑇 𝜉∗  to being bounded.

© Fraunhofer ITWM


