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Design for Networks

Ben M Parker (Brunel University, London) DOE for networks July 2023 2 / 42



Ben M Parker (Brunel University, London) DOE for networks July 2023 3 / 42



Ben M Parker (Brunel University, London) DOE for networks July 2023 4 / 42



Ben M Parker (Brunel University, London) DOE for networks July 2023 5 / 42



Examples of experiments we might be interested in

Different adverts are sent to different customers (experimental units). We
measure the amount (£) spent on the product after advertising. This
amount may be influenced by other customers in their social network.

Image by Gordon Johnson from Pixabay
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Examples of experiments we might be interested in

A crop experiment to assess the effect of fertilisers on biodiversity; we
apply several treatments (fertilisers) to experimental units (plots), and
measure the response (biomass of insects present) in each experimental
unit after one year.
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Karate club

34 members of a club.

Without considering network structure all randomly chosen designs
are equivalent (17 get treatment 1, 17 get treatment 2):

1 2 3 4 5 6 7 8 9 . . . 33 34
If a network exists need to carefully consider best experimental design

replication still applies
randomisation may not be possible (not all nodes are equal)
blocking may be a factor (groups are formed as people are different)
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Networked experiments

Alice and Bob are friends. We feed Alice a
new type of chocolate, and Bob a control
(no chocolate).

Ideas:

1 If I give a treatment to Alice, Bob may see the treatment and like it.
(Indirect treatment effect: Alice has chocolate so Bob is happy!)

2 If I give a treatment to Alice, her friend Bob may see Alice’s response,
and modify his response.
(Autoregressive effect: Alice is happy after eating chocolate, so Bob is
happy.)

3 Alice and Bob are friends so there responses are similar
(Blocking)

(1)= JRSSC Paper (BP/Gilmour/Schormans)[2]
(1+3)= Vasiliki Koutra/ BP/Gilmour [1]

(2) = Current work (discussed here)
(1+2+3)= Easy generalisation/much work to do
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Networks

We consider a graph, as a collection of nodes N and edges E .

The nodes represent subjects on which we apply some treatment. We
have |N| = n subjects.

The edges represent some relationship between the subjects.

The relationship between our subjects is specified by the adjacency
matrix A where Aij > 0 if i and j are related and Aij = 0 otherwise.
By convention, Aii = 0.

We sometimes assume additionally that links are non-directional, such
that Aij = Aji , i.e. A is symmetrical.

A =


0 1 0 0
1 0 1 1
0 1 0 0
0 1 0 0

 or A =


0 0.5 0 0

0.3 0 0.2 0.1
0 0.4 0 0
0 0.4 0 0


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Spatial Lag model

The response of each node depends on the response of connected units:

Yi = µ+ τt(i) + ρ

n∑
k=1

AikYk + εi , (1)

where

i ∈ {1, . . . , n} is the experimental unit,

t(i) ∈ {1, . . . ,m} is treatment given to the i-th experimental unit,

τj is the treatment effect of the j−th treatment, j ∈ {1, . . . , n},
ρ is an autoregressive parameter,

A is a n × n matrix where 0 ≤ Aij ≤ 1 ∀i 6= j , Aii = 0 ∀i ,
we assume that εi are independent and identically normally
distributed with mean 0 and constant variance σ2.

Each experimental unit receives exactly one (unstructured) treatment.
WLOG, to allow identifiability of the treatment effects we restrict τm = 0.
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Let K = K (ρ) = (I − ρAT )−1.
We can show

Y ∼ N(KXβ, σ2KKT )

After some algebra, we can show that the Fisher information matrix is I =

1

σ2



n n1 n2 . . . nm 1TAKXβ
n1 n1 0 . . . 0 (X11 X21 . . . Xn1)AKXβ
...

...
...

. . .
...

nj 0 . . . . . . 0 (X1j X2j . . . Xnj)AKXβ
...

...
...

. . .
...

nm 0 0 . . . nm (X1m X2m . . . Xnm)AKXβ

1TAKXβ . . . . . . . . . . . . (AKXβ)T (AKXβ) + σ2

2 tr
(
[KTAT + AK ]2

)


.

for θ = (µ τ1 τ2 . . . τm ρ)T ,
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Optimality Criteria

We may be interested in estimating τ , ρ, or sometimes both.

Estimating ρ We wish to estimate ρ as precisely as possible, which
corresponds to minimising Var ρ̂.

Estimating τ We wish to estimate the treatment effect difference as
precisely as possible, so seek to minimise Var τ̂1 − τ2.

These both correspond to maximising some function of the information
matrix, I.

→
Assign treatments
(label nodes with
1s and 2s)

→ Check f(I) maximised.
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Results

As Fisher Information depends on unknown parameters β, ρ, σ2, we
arbitrarily chose Locally Optimal Designs:, i.e. optimal for a particular
value of these parameters that in reality may be unknown before doing the
experiment.

This is equivalent to choosing a point prior for the unknown parameters.
We chose β0 = µ = 0, β1 = τ1 = 10, β2 = τ2 = 20, σ2 = 1 and present
results for ρ = 0, 0.1, 0.2, . . . , 0.9.

We demonstrate for m = 2 treatments. Treatment 1 is shown in red,
treatment 2 in blue.
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Optimal designs for Estimating ρ
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Optimal designs for Estimating τ
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Optimal designs for Estimating ρ
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Optimal designs for Estimating τ
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Bayesian Priors

For a simple network, specify two simple priors:

(Top) Prior 1: µ = 2, τ2 = 1, τ2 = 0, and ρ ∼ N(0.5, σ2), |ρ| < 1.
(Left) Prior 2: As prior 1, except now the prior was ρ ∼ U[0, 1]

(pseudo)-Bayesian designs for two simple priors on ρ, under the MRSAR
for estimating (left)ψτ and (right) ψρ
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Efficiency

We chose point priors of
β0 = µ = 0 = 20, β1 = τ1 = 10, β2 = τ2 = 0, σ2 = 1 , and now ρ = 0.5.

Figure: Efficiency of optimal designs. Left: efficiency for ψτ , right hand pair of
plots the efficiency forψρ.
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Not just for simple unweighted network models...

Up to now, examples have used adjacency matrices A which are binary,
but nothing in our theory requires this to be so.

Figure: Optimal spatial designs for points randomly chosen in [0, 1]× [0, 1] for
varying ρ. (Left) shows optimal designs for ψρ, estimating AR parameter. (right)
shows optimal designs for ψτ , estimating treatment difference τ2 − τ1.
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Crossover trial

In a crossover trial, generally each subject/period combination is an
experimental unit.

Period
1 2 3 4

Subject

a 1 2 3 4
b 5 6 7 8
c 9 10 11 12
d 13 14 15 16
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Optimal designs for Estimating τ
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Part II

Networks for Design
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Design Algorithm

1

2

3

4

5

6

7

8

9

a b cP1

P2

P3 →
Assign treatments
(label nodes with
1s and 2s)

→ Check f(I) maximised.

The design space is all possible colourings of the graph of n nodes
with m colours representing m treatments.

We can use a complete enumeration, or well known algorithms such
as exchange algorithms.

For even reasonable networks the design space (the set of all possible
colourings) is very large.
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Symmetry of graphs

Subgraph  1 Subgraph  2

1

2

3

4

5 1 0

6 9 1 1 1 2

7 8 1 3 1 4

Subgraphs 1 and 2 are exchangeable; i.e for
subdesign A on subgraph 1, and subdesign B
on subgraph 2 (call this [A1,B2]), we need not
also consider [A2,B1] as by symmetry this
design has the same criterion value.
We can reduce our design space greatly if we
can identify exchange subgraphs.
This is equivalent to finding an automorphism
for our network, a relabelling or permutation of
the set N such that the edges E are preserved.
This is the Graph Automorphism Problem.
Recently it has been shown (and peer
reviewed?) that this is a hard problem, but is
not (quite) NP-hard. However, fast algorithms
do exist in software, including R.
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Example 1

1

(1)

7

(2)

2

(1)

3

(2)

4

(2)

5

(2)

6

(1)

8

(1)

9

(1)

1 0

(1)

We obtain the correct optimal design, but evaluate the information matrix
236 times as opposed to 507 times.
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Example 2

1

1

2

2

2

2

1

2

1

1

2

1

1

1

1

1

2

2

2

2

2

2

2

2

1

1

1

1

1

1

2

2

1

1

2

2

1

1

2

2

524287 without automorphisms, 221183 with.
58.58s without, opposed to 31.56 with.
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Results

Description n No. auto-
morphisms

Evaluations
without auto-
morphisms

Evaluations
with auto-
morphisms

Time
without
automor-
phisms

Time with
automor-
phisms

Small social network (1) 10 8 507 236 0.04 0.02
Small social network 10 1 511 511 0.04 0.04
Larger social network (2) 20 8 524,287 221,183 58.58 31.56
Block design with neighbour
effects

12 384 535,008 18,766 108.52 33.68

Non-rectangular field trial (3) 15 2 2,368,741 1,581,572 279.6 197.58
Crossover trial with
dropouts(4)

15 6 2,262,800 904,555 283.86 134.26
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Description n No. auto-
morphisms

Time without
automor-
phisms

Time with
automor-
phisms

Small social network (1) 10 8 0.04 0.02
Small social network 10 1 0.04 0.04
Larger social network (2) 20 8 58.58 31.56
Block design with neighbour
effects

12 384 108.52 33.68

Non-rectangular field trial (3) 15 2 279.6 197.58
Crossover trial with
dropouts(4)

15 6 283.86 134.26
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Simple Blocked Experiment

Block Experimental Units

1 1 2 3 4
2 5 6 7 8
3 9 10 11 12
4 13 14 15 16

12

3 4

56

7 8

910

11 12

1314

15 16

B1

B2

B3

B4
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Block Exp. Units

1 1 2 3 4
2 5 6 7 8
3 9 10 11 12
4 13 14 15 16

12

3 4

56

7 8

910

11 12

1314

15 16

B1

B2

B3

B4

Original Problem Network Problem

No of Treatments 2 6

Exp. Units {1, 2, . . . 16} {1, 2, . . . , 16,B1,B2,B3,B4}
Wish to estimate τ1 − τ2 τ1 − τ2
Opt. criterion A As

Restrictions
Can apply either
treatment to any
unit.

Can apply treatments 1,2
to units {1, 2, . . . , 16},
and treatments 3,4,5,6 to
units B1-B4.
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Block designs are network designs!

We represent our blocked experiment by the linear network effects model
as

Yi = µ+ τt(i) +
∑

k={1,...,16,B1,B2,B3,B4}

Aikγt(k) + εi , i = 1, . . . , 16

By writing bj(i) =
∑

k={1,...,16,B1,B2,B3,B4} Aikγt(k), we can show that this
is equivalent to

Yi = µ+ τt(i) + bj(i) + εi ,

a more familiar representation of a blocked experiment, where bj(i) is block
effect of experimental unit i being in block j .
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Row Column Design

C1 C2 C3

R1 1 2 3
R2 4 5 6
R3 7 8 9

1
2

3

4

5

67

8

9

R1

R2

R3

C1

C2

C3
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Crossover Design

Period
P1 P2 P3

Subject

a 1 2 3
b 4 5 6
c 7 8 9

1

2

3

4

5

6

7

8

9

a b cP1

P2

P3
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Evaluating blocked designs

We evaluate several blocked experimental structures:

1 3 blocks of size 3 (n = 9), with 3 treatments. The optimal designs
are randomised complete block designs;

2 4 blocks of size 3 (n = 12), with i) 3 and ii) 4 treatments. The
optimal designs are i) randomised complete block designs and ii)
balanced incomplete block designs;

3 A row-column structure with 3 rows and 3 columns, each row-column
intersection containing a single experimental unit, with 3 treatments.

The optimal designs are Latin Squares of size 3:

1 2 3

2 3 1

3 1 2

4 A row-column structure with 4 rows and 4 columns, each row-column
intersection containing a single experimental unit, with i)3 and ii)4
treatments. The optimal designs for ii) are Latin Squares of size 4.
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Results for blocked designs

Ex. Description n m Number of
automor-
phisms

Evaluations
without
automor-
phisms

Evaluations
with auto-
morphisms

Time with-
out auto-
morphisms

Time with
automor-
phisms

1 3x3 Blocks 9 3 1,296 2,925 94 2.52 1.54
2i 4x3 Blocks 12 3 82,944 86,126 379 55.44 310.02
2ii 4x3 Blocks 12 4 82,944 605,960 1808 378.82 1051.54
3 3x3 Row Column 9 3 72 2,807 241 1.9 0.48
4i 4x4 Row Column 16 3 1,152 7,123,656 34,873 6051.12 493.32
4ii 4x4 Row Column 16 4 1,152 170,863,644 1,610,909 141456.6 14123.94
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Results for blocked designs

Ex. Description n m Number of
automor-
phisms

Time with-
out auto-
morphisms

Time with
automor-
phisms

1 3x3 Blocks 9 3 1,296 2.52 1.54
2i 4x3 Blocks 12 3 82,944 55.44 310.02
2ii 4x3 Blocks 12 4 82,944 378.82 1,051.54
3 3x3 Row Column 9 3 72 1.9 0.48
4i 4x4 Row Column 16 3 1,152 6,051.12 493.32
4ii 4x4 Row Column 16 4 1,152 141,456.6 14,123.94

We don’t claim that these designs would be sensibly found via this method,
as the solutions are known analytically, but we seek to demonstrate the
benefits of automorphisms via improvements in calculations.
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Experimental design principles

Remember the three Rs?

Replication

Randomisation = Automorphisms of graph

r...Blocking
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Conclusions and future work

These network models allows a wide range of experiments
(networks/spatial/temporal) to be considered, even when a network is
not obvious. Suggestions for real experiments in the literature would
be very useful.

R Software is available at
https://github.com/bmp22/networkDesign. The documentation
for spatial lag model is still in progress, but there are some
vignettes/instructions for simpler models

Still some challenges on analysis of data from experiments designed in
this way.

Some computational challenges to find exact designs for a wide range
of large networks, but finding good designs which are highly efficient
is very possible.
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Extending the model

A more general model is

Yij = µ+ τt(i) + bj +
n∑

k=1

Akiγt(k) + ρ

n∑
k=1

AikYk + εij , (2)

where the response of the (ij)-th experimental unit now depends on

a grand mean µ

a treatment effect corresponding to the treatment given directly to
the experimental unit;

a block effect depending on the block that the experimental unit is in;

the sum of the network effect corresponding to treatments given to
neighbours of the experimental unit, weighted for the strength of the
influences of those neighbours;

the sum of the “viral” effects due to the experimental units response
being modified due to the response of its neighbours;

an error term.
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This model in vector form is

E (Y ) = X (µ τT )T + Zb + ATXγ + ρATY + ε

where Z is the block incidence matrix such that Zij = 1 if experimental
unit i is in block j , and Zij = 0 otherwise, and all other terms are as before.
We define our vector of unknown parameters β here as

β = (µ τT bT γT )T ,

and show similarly to before that our information matrix is now given by
the block matrix

I =
1

σ2


XTX XTZ XTAX XTAKXβ

ZTZ ZTAX ZTAKXβ
(AX )TAX (AX )TAKXβ

(AKXβ)T (AKXβ) + σ2

2 tr
(
[KTAT + AK ]2

)
 .

where only the upper diagonal terms are shown as the matrix is symmetric.
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We also plot, for the same network, the information criterion for 3 arbitrary
balanced designs for 0 < ρ < 1, with prior for other variables as before.

Figure: Optimality function values for (left)ψτ and (right)ψρ for varying ρ for two
arbitrary balanced designs: (1,1,1,1,1,2,2,2,2,2) in red, (1,2,1,2,1,2,1,2,1,2) in
blue, and (1,1,2,2,1,1,2,2,1,2) in purple

This shows clearly that ψτ varies substantially for this network depending
on the (usually unknown) value of ρ, but that ψρ varies less.
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