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The model

Consider the common linear regression model

y(t) = θ1f1(t) + . . .+ θmfm(t) + ε(t) , t ∈ T ⊂ Rd

functions f1(t), . . . , fm(t) are linearly independent and
continuous,

a random error field ε(t) has the zero mean and the
covariance kernel K (t, s) = E[ε(t)ε(s)],

parameters θ1, . . . , θm are unknown and have to be
estimated.

Suppose that we observe one realization of a random field.
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Prediction with discrete observation

The best linear unbiased predictor (BLUP) of y(t0) is

ŷ(t0) = f ⊤(t0)θ̂BLUE + K⊤
t0
Σ−1(Y − X θ̂BLUE),

where Σ =
(
K (ti , tj)

)N
i ,j=1

, Kt0 =
(
K (t0, t1), . . . ,K (t0, tN)

)⊤
,

X = (f (t1), . . . , f (tN))
⊤, Y = (y(t1), . . . , y(tN))

⊤ ∈ RN and

θ̂BLUE = (X⊤Σ−1X )−1X⊤Σ−1Y .

The BLUP satisfies the unbiased condition E[ŷ(t0)] = E[y(t0)]
and minimizes the mean squared error
MSE(ỹ(t0)) = E (y(t0)− ỹ(t0))

2 in the class of all linear
unbiased predictors ỹ(t0); its mean squared error is

MSE(ŷ(t0)) = K (t0, t0)−
[
f (t0)
Kt0

]⊤ [
0 X⊤

X Σ

]−1 [
f (t0)
Kt0

]
.

Gradient-enhanced kriging is possible.
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BLUE for discrete observation

A general estimator

θ̂ = GTY , Y = (y(t1), . . . , y(tN))
T ,

where G is a N ×m-matrix.
The condition of unbiasedness E[θ̂] = θ means

GTX = 1m×m,

where X = (f (t1), . . . , f (tN))
T is a N ×m-matrix.

Var(θ̂) = GTΣG → min
unbiased G

By Gauss-Markov theorem, the best linear unbiased estimator
(BLUE) is

GT
∗ = (XTΣ−1X )−1XTΣ−1,

where Σ = (K (ti , tj))
N
i ,j=1.
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BLUE for discrete observation with derivatives

A general estimator

θ̂ = GT
0 Y0 + GT

1 Y1, Y0 = (y(t1), . . . , y(tN))
T ,

Y1 = (y ′(t1), . . . , y
′(tN))

T ,

where G0 and G1 are N ×m-matrices.
The covariance matrix is

Var(θ̂) = GTΣG ,

where G =
(

G0

G1

)
, Σ =

(
Σ00

Σ10

Σ⊤
10

Σ11

)
is a block matrix,

Σ00 =
(
K (ti , tj)

)N
i ,j=1

, Σ10 =
(

∂
∂ti
K (ti , tj)

)N
i ,j=1

,

Σ11 =
(

∂2

∂ti∂tj
K (ti , tj)

)N
i ,j=1

.
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Continuous observation without derivatives

A general estimator

θ̂G =

∫
T
G0(dt)y(t),

where G0(dt) is a signed vector-measure.
The condition of unbiasedness E[θ̂] = θ means∫

T
f (t)GT

0 (dt) = 1m×m.

The covariance matrix of any unbiased estimator θ̂G is

Var(θ̂G ) =

∫
T

∫
T
K (t, s)G0(dt)G

T
0 (ds).

The continuous BLUE minimizes this matrix and may not exist.
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Continuous observation with derivatives

A general estimator

θ̂G =

∫
T
G0(dt)y(t) + . . .+

∫
T
Gq(dt)y

(q)(t),

where G0(dt), . . . ,Gq(dt) are signed vector-measures.

The condition of unbiasedness E[θ̂] = θ means∫
T
f (t)GT

0 (dt) + . . .+

∫
T
f (q)(t)GT

q (dt) = 1m×m.

The covariance matrix of any unbiased estimator θ̂G is

Var(θ̂G ) =

q∑
i=0

q∑
j=0

∫
T

∫
T

∂ i+jK (t, s)

∂t i∂s j
Gi(dt)G

T
j (ds).

The continuous BLUE minimizes this matrix and may not exist.
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Representation of continuous BLUE

Let ζ0, . . . , ζq be some signed vector-measures defined on T
such that the m ×m matrix

C =

q∑
i=0

∫
T
ζi(dt)

(
f (i)(t)

)T
is non-degenerate. Define G = (G0, . . . ,Gq), where Gi are the
signed vector-measures and Gi(dt) = C−1ζi(dt) for
i = 0, . . . , q.

Then the estimator θ̂G is unbiased.
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Solution for continuous BLUE

Let K (·, ·) ∈ C q([A,B]× [A,B]) for some q ≥ 0. Suppose
that the process {y(t)|t ∈ [A,B]} along with its q derivatives
can be observed at all t ∈ T ⊆ [A,B]. Assume also that all
components of f (·) are q times differentiable. Let ζ0, . . . , ζq
be signed vector-measures defined on T such that the matrix
C is non-degenerate. Define G = (G0, . . . ,Gq),
Gi(dt) = C−1ζi(dt) for i = 0, . . . , q.

The estimator θ̂G =
∫
T G (dt)Y (t) is the BLUE if and only if

q∑
i=0

∫
T
K (i)(t, s)ζi(dt) = f (s) ∀s ∈ T .

In this case, the covariance matrix of θ̂G is Var(θ̂G ) = C−1.
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Properties

To construct the BLUE, we have to solve

q∑
i=0

∫
T
K (i)(t, s)ζi(dt) = f (s) ∀s ∈ T .

For q = 0 the BLUE measure is a solution of Fredholm
integral equation of the first kind.

We can solve the equation individually for each
component of the vector of regression functions f (t).

The BLUE measure may not exist.

For q > 0 the BLUE measure is not unique [due to
possibility of integration by parts].
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BLUP without derivatives

Assume that (1) the best linear unbiased estimator (BLUE)
θ̂BLUE =

∫
T y(t)G (dt) exists,

(2) there exists a signed measure ζt0(dt) which satisfies∫
T
K (t, s)ζt0(dt) = K (t0, s), ∀s ∈ T .

Then the BLUP measure Q∗ exists and is given by

Q∗(dt) = ζt0(dt) + c⊤G (dt),

where c = f (t0)−
∫
T f (t)ζt0(dt) . The MSE of the BLUP

ŷQ∗(t0) =
∫
T y(t)Q∗(dt) is given by

MSE(ŷQ∗(t0)) = K (t0, t0) + c⊤Df (t0)−
∫
T
K (t, t0)Q∗(dt) ,

where D=
∫
T

∫
T K (t, s)G (dt)G⊤(ds) is the covariance matrix

of θ̂BLUE=
∫
T y(t)G (dt).

Andrey Pepelyshev Prediction



BLUP with derivatives 1

Consider the problem of prediction of y (p)(t0), the p-th
derivative of y at a point t0 ̸∈ Tp, where 0 ≤ p ≤ q.
A general linear predictor of the p-th derivative y (p)(t0) can be
defined as

ŷp,Q(t0) =

∫
Y⊤(t)Q(dt) =

q∑
i=0

∫
Ti

y (i)(t)Qi(dt).

The estimator ŷp,Q(t0) is unbiased if E[ŷp,Q(t0)] = E[y (p)(t0)],
which is equivalent to∫

F(t)Q(dt) = f (p)(t0),

where F(t) =
(
f (t), f (1)(t), . . . , f (q)(t)

)
is a

m×(q + 1)-matrix.
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BLUP with derivatives 2

Assume that

(1) The best linear unbiased estimator (BLUE)
θ̂BLUE =

∫
G(dt)Y(t) exists, where G(dt) is some signed

m×(q + 1)-matrix measure (that is, the j-th column of G(dt)
is a signed vector measure defined on Tj);

(2) There exists a signed vector-measure ζp,t0(dt) (of size
q + 1) which satisfies the equation∫

K⊤(t, s)ζp,t0(dt) =
∂pK (s, t0)

∂tp0
, ∀s ∈ Ti ,

where K(t, s) =
(∂jK(t,s)

∂s j

)q
j=0

is a (q + 1)-dimensional vector.
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BLUP with derivatives 3

Under above assumptions,
the BLUP measure Q∗ exists and is given by

Q∗(dt) = ζp,t0(dt) + G⊤(dt)cp,

where

cp = f (p)(t0)−
∫

F(t)ζp,t0(dt).

The MSE of the BLUP ŷp,Q∗(t0) is given by

MSE(ŷp,Q∗(t0)) =
∂2pK (t, s)

∂tp∂sp

∣∣∣∣
t=t0
s=t0

+c⊤p Df
(p)(t0)−

∫
K⊤(t, t0)Q∗(dt) ,

where

D =

∫ ∫
G(dt)K(t, s)G⊤(ds)

is the covariance matrix of θ̂BLUE =
∫
G(dt)Y(t).
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Examples of continuous BLUP 1

Consider the model

y(t) = θ + ε(t), t = (t1, t2) ∈ T = [0, 1]2,

K(t, t ′) = E[ε(t)ε(t ′)] = exp {−λ [|t1 − t ′1|+ |t2 − t ′2|]} ,

where λ > 0 and t = (t1, t2), t
′ = (t ′1, t

′
2) ∈ [0, 1]2.

The BLUP at the point T = (T1,T2) is
∫
T y(t)Q∗(dt), where

Q∗(dt) = ζT (dt) + c G(dt) with c = 1−
∫
T
ζT (dt),

where G(dt) is the BLUE measure and does not depend on
T = (T1,T2).
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Examples of continuous BLUP 2

Define

G (dti) =
1

2 + λ
[δ0(dti) + δ1(dti) + λdti ] , ti ∈ [0, 1].

Define

ζTi
(dti) =


e−λ|Ti |δ0(dti), if Ti ≤ 0,
δTi

(dti), if 0 ≤ Ti ≤ 1,
e−λ(Ti−1)δ1(dti), if Ti ≥ 1.

Then we have Q∗(dt) = ζT (dt) + c G(dt) with

ζT (dt) = ζT1(dt1)ζT2(dt2), G(dt) = G (dt1)G (dt2).
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Examples of continuous BLUP 3

For T1 ≤ 0 we obtain

Q∗(dt)=


e−λ|T1|δ0(dt1)δT2(dt2) +

(
1− e−λ|T1|

)
G(dt), if 0≤T2≤1,

e−λ|T1|−λ|T2|δ0(dt1)δ0(dt2) +
(
1− e−λ|T1|−λ|T2|

)
G(dt),

if T2 ≤ 0,
e−λ|T1|−λ(T2−1)δ0(dt1)δ1(dt2) +

(
1− e−λ|T1|−λ|T2−1|)G(dt),

if T2 ≥ 1.

Similar formulas can be obtained for 0 < T1 < 1 and T1 ≥ 1.
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Examples of continuous BLUP 4
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The square root of the MSE of the BLUP for the N×N-point
equidistant design at points (i/(N − 1), j/(N − 1)) with N = 3
(left) and N = 4 (right) and the exponential kernel with λ = 2.
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Examples of continuous BLUP for Matern 3/2

Consider the model y(t) = θ + ε(t), t ∈ [A,B] with Matérn
3/2 covariance kernel K (t, s) = (1 + λ|t − s|)e−λ|t−s| .
Let t0 > B and we want to predict ŷ0,Q∗(t0). Define
zt0,B = (1 + λ(t0 − B))e−λ(t0−B), zt0,1,B = (t0 − B)e−λ(t0−B) ,
C = 1 + λ(B − A)/4, c0 = 1− zt0,B). The BLUP measure is

Q∗(dt) = 0.5c0δA(dt)/C + (0.5c0/C + zt0,B)δB(dt) + 0.25c0λdt/C

−0.25c0/(Cλ)δA,y ′(dt) + (zt0,1,B + 0.25c0/(Cλ))δB,y ′(dt)

The corresponding BLUP is

ŷ0,Q∗(t0) = 0.5c0y(A)/C+(0.5c0/C+zt0,B)y(B)+0.25c0λ

∫ B

A

y(t)dt/C

−0.25c0/(Cλ)y
′(A) + (zt0,1,B + 0.25c0/(Cλ))y

′(B).
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Examples of continuous BLUP for Matern 3/2
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Square root of the MSE of the BLUP for the design ξN2,0,0,0

with N = 3 (left) and N = 4 (right), and the Matérn 3/2
product-kernel with λ = 2.
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Examples of continuous BLUP for Matern 3/2
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Square root of the MSE of the BLUP for the design ξN2,0,0,0

(left), ξN2,4N−4,4N−4,4N−4 (center) and ξN2,N2,N2,N2 (right) with
N = 3 and the Matérn 3/2 product-kernel with λ = 2.

The MSE is the same for ξN2,4N−4,4N−4,4N−4 and ξN2,N2,N2,N2 .
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