Kernel relaxation for space-filling design¹

Luc Pronzato

Laboratoire I3S, Université Côte d'Azur, CNRS, France

- joint work with Anatoly ZHIGLJAVSKY, Cardiff University -

July 2023

¹Partially funded by project ANR INDEX (ANR-18-CE91-0007)

1 Three space-filling criteria

 $\mathscr{X} = a \text{ compact subset of } \mathbb{R}^d, \ \mathscr{X} = cl(int(\mathscr{X})); \ f: \ \mathscr{X} \to \mathbb{R}$ use pairs $(\mathbf{x}_i, f(\mathbf{x}_i)), \ i = 1, ..., n$, to approximate or integrate f over \mathscr{X}

With little prior information about f

- → observe "everywhere"
- → choose a design $X_n = \{x_1, ..., x_n\}$ space-filling in \mathscr{X}

1 Three space-filling criteria

 $\mathscr{X} = a \text{ compact subset of } \mathbb{R}^d, \ \mathscr{X} = cl(int(\mathscr{X})); \ f: \ \mathscr{X} \to \mathbb{R}$ use pairs $(\mathbf{x}_i, f(\mathbf{x}_i)), \ i = 1, ..., n$, to approximate or integrate f over \mathscr{X}

With little prior information about *f* → observe "everywhere"

→ choose a design $\mathbf{X}_n = {\mathbf{x}_1, \dots, \mathbf{x}_n}$ space-filling in \mathscr{X}

We shall consider three "classical" criteria:

- Packing radius
- Overing radius
- 4 Ls-quantisation error

1/ Packing radius: maximise $PR(\mathbf{X}_n) \triangleq \frac{1}{2} \min_{i \neq j} \|\mathbf{x}_i - \mathbf{x}_j\|$

 $PR(\mathbf{X}_n) =$ separation radius $= \frac{1}{2}$ Maximin distance criterion

→ can often be related to numerical stability issues → easy to compute, but pushes points to the boundary of \mathscr{X} 2/Covering radius: minimise $CR(X_n) = CR_{\mathscr{X}}(X_n) \triangleq \max_{x \in \mathscr{X}} \min_{x_i} ||x - x_i||$ $CR(X_n) = \text{fill distance} = \text{dispersion} = \min Max \text{ distance criterion}$

- \rightarrow we are never far from a design point
- → more difficult to compute
- → appears in bounds on approximation error (Narcowich et al., 2005; Schaback and Wendland, 2006)

3/ L_s-mean quantisation error:

 $\mu \text{ a prob. measure on } \mathscr{X} \text{ (equiv. to Lebesgue measure } \Lambda\text{)}$ minimise $E_{s,\mu}(\mathbf{X}_n) \triangleq \left[\int_{\mathscr{X}} \left[\underbrace{\min_{\mathbf{X}_i} \|\mathbf{x} - \mathbf{x}_i\|}_{=d(\mathbf{x},\mathbf{X}_i)} \right]^s \mathrm{d}\mu(\mathbf{x}) \right]^{1/s}, s > 0$

L. Pronzato (UCA, CNRS, France) Kernel relaxation for space-filling design mODA

 $3/L_s$ -mean quantisation error:

 μ a prob. measure on \mathscr{X} (equiv. to Lebesgue measure Λ)

minimise $E_{s,\mu}(\mathbf{X}_n) \triangleq \left[\int_{\mathscr{X}} \left[\underbrace{\min_{\mathbf{x}_i} \|\mathbf{x} - \mathbf{x}_i\|}_{-d(\mathbf{x},\mathbf{X}_i)} \right]^s d\mu(\mathbf{x}) \right]^{1/s}$, s > 0

Optimal $\mathbf{X}_{n}^{*} = n$ -optimal set of centers, a Voronoi partition of \mathbb{R}^d w.r.t. $\mathbf{X}_n^* = n$ -optimal quantiser; see (Graf and Luschgy, 2000)

3/ L_s-mean quantisation error:

 μ a prob. measure on \mathscr{X} (equiv. to Lebesgue measure Λ)

minimise $E_{s,\mu}(\mathbf{X}_n) \triangleq \left[\int_{\mathscr{X}} \left[\min_{\substack{\mathbf{x}_i \\ \mathbf{x}_i \\ = d(\mathbf{x}, \mathbf{X}_n)}} \right]^s d\mu(\mathbf{x}) \right]^{1/s}$, s > 0

Optimal X_n^{*} = <u>n</u>-optimal set of centers, a Voronoi partition of ℝ^d w.r.t. X_n^{*} = <u>n</u>-optimal quantiser; see (Graf and Luschgy, 2000)
E_{s,μ}(X_n) → bounds on worst-case approximation and integration errors (Krieg and Sonnleitner, 2020)
→ general bounds on integ, error for Lipschitz functions (Pagès, 1997) 3/ L_s-mean quantisation error:

 μ a prob. measure on \mathscr{X} (equiv. to Lebesgue measure Λ)

minimise
$$E_{s,\mu}(\mathbf{X}_n) \triangleq \left[\int_{\mathscr{X}} \left[\underbrace{\min_{\mathbf{x}_i} \|\mathbf{x} - \mathbf{x}_i\|}_{=d(\mathbf{x},\mathbf{X}_n)} \right]^s \mathrm{d}\mu(\mathbf{x}) \right]^{1/3}$$
, $s > 0$

Optimal X_n^{*} = <u>n-optimal set of centers</u>, a Voronoi partition of ℝ^d w.r.t. X_n^{*} = <u>n-optimal quantiser</u>; see (Graf and Luschgy, 2000)
E_{s,μ}(X_n) → bounds on worst-case approximation and integration errors (Krieg and Sonnleitner, 2020) → general bounds on integ. error for Lipschitz functions (Pagès, 1997)
For s ≥ 1, E_{s,μ}(X_n^{*}) = min_{X_n} E_{s,μ}(X_n) = inf_{µn∈𝒫n} W_s(µ, µ_n), with
𝒫_n = set of discrete probabilities on ℝ^d supported on n points
W_s(µ, µ') = L_s-Wasserstein (or Kantorovich) metric = inf_M (∫_{ℝ^d×ℝ^d} ||x - x'||^s dM(x, x'))^{1/s} with M having marginals µ and µ'

③ L_2 -quantisation, d = 2, n = 7

 \rightarrow Maximise PR(**X**_n), minimise CR(**X**_n) and $E_s($ **X** $_n)$

2 Kernel relaxation

Some notation:

 $\|\cdot\|$ is always the Euclidean norm in \mathbb{R}^d For K a kernel on $\mathscr{X} \times \mathscr{X}$ (\rightarrow RKHS \mathcal{H}_K when K Pos. Def.), ν a signed measure on \mathscr{X} , define:

$$\mathscr{E}_{K}(\nu) \triangleq \int_{\mathscr{X}^{2}} K(\mathbf{x}, \mathbf{x}') \, \mathrm{d}\nu(\mathbf{x}) \mathrm{d}\nu(\mathbf{x}') = \text{energy of } \nu$$
$$P_{K,\nu}(\mathbf{x}) \triangleq \int_{\mathscr{X}} K(\mathbf{x}, \mathbf{x}') \, \mathrm{d}\nu(\mathbf{x}') = \text{potential of } \nu \text{ at } \mathbf{x}$$
$$[P_{K,\nu}(\cdot) = \text{kernel imbedding of } \nu \text{ into } \mathcal{H}_{K}]$$

Note that $\int_{\mathscr{X}} P_{K,\nu}(\mathbf{x}) d\nu(\mathbf{x}) = \mathscr{E}_{K}(\nu)$

For q > 0, $d(\mathbf{x}, \mathbf{X}_n) = (\max_{\mathbf{x}_i} \|\mathbf{x} - \mathbf{x}_i\|^{-q})^{-1/q}$

$$\frac{1}{n}\sum_{i=1}^{n}\|\mathbf{x}-\mathbf{x}_{i}\|^{-q} \leq \max_{\mathbf{x}_{i}}\|\mathbf{x}-\mathbf{x}_{i}\|^{-q} \leq \sum_{i=1}^{n}\|\mathbf{x}-\mathbf{x}_{i}\|^{-q}$$

For q > 0, $d(\mathbf{x}, \mathbf{X}_n) = (\max_{\mathbf{x}_i} \|\mathbf{x} - \mathbf{x}_i\|^{-q})^{-1/q}$

$$\frac{1}{n}\sum_{i=1}^{n} \|\mathbf{x} - \mathbf{x}_{i}\|^{-q} \leq \max_{\mathbf{x}_{i}} \|\mathbf{x} - \mathbf{x}_{i}\|^{-q} \leq \sum_{i=1}^{n} \|\mathbf{x} - \mathbf{x}_{i}\|^{-q}$$

$$\sum_{i=1}^{n} \|\mathbf{x} - \mathbf{x}_{i}\|^{-q} \leq \left[\max_{\mathbf{x}_{i}} \|\mathbf{x} - \mathbf{x}_{i}\|^{-q}\right]^{-1/q} \leq \left[\frac{1}{n}\sum_{i=1}^{n} \|\mathbf{x} - \mathbf{x}_{i}\|^{-q}\right]^{-1/q}$$

L. Pronzato (UCA, CNRS, France) Kernel relaxation for space-filling design mODAa 13, Jul. 2023

8 / 54

For q > 0, $d(\mathbf{x}, \mathbf{X}_n) = (\max_{\mathbf{x}_i} \|\mathbf{x} - \mathbf{x}_i\|^{-q})^{-1/q}$

п

$$\frac{1}{n} \sum_{i=1}^{n} \|\mathbf{x} - \mathbf{x}_{i}\|^{-q} \leq \max_{\mathbf{x}_{i}} \|\mathbf{x} - \mathbf{x}_{i}\|^{-q} \leq \sum_{i=1}^{n} \|\mathbf{x} - \mathbf{x}_{i}\|^{-q}$$
$$\left[\sum_{i=1}^{n} \|\mathbf{x} - \mathbf{x}_{i}\|^{-q}\right]^{-1/q} \leq \left[\max_{\mathbf{x}_{i}} \|\mathbf{x} - \mathbf{x}_{i}\|^{-q}\right]^{-1/q} \leq \left[\frac{1}{n} \sum_{i=1}^{n} \|\mathbf{x} - \mathbf{x}_{i}\|^{-q}\right]^{-1/q}$$
$$\overset{-1/q}{=} \left[P_{K_{q},\xi_{n}}(\mathbf{x})\right]^{-1/q} \leq d(\mathbf{x},\mathbf{X}_{n}) \leq \left[P_{K_{q},\xi_{n}}(\mathbf{x})\right]^{-1/q}$$

with $K_q(\mathbf{x}, \mathbf{x}') = \|\mathbf{x} - \mathbf{x}'\|^{-q}$ the Riesz kernel with parameter q(K_q is singular, does not define a RKHS) and ξ_n the empirical measure on \mathbf{X}_n

For q > 0, $d(\mathbf{x}, \mathbf{X}_n) = (\max_{\mathbf{x}_i} \|\mathbf{x} - \mathbf{x}_i\|^{-q})^{-1/q}$

n

$$\frac{1}{n} \sum_{i=1}^{n} \|\mathbf{x} - \mathbf{x}_{i}\|^{-q} \leq \max_{\mathbf{x}_{i}} \|\mathbf{x} - \mathbf{x}_{i}\|^{-q} \leq \sum_{i=1}^{n} \|\mathbf{x} - \mathbf{x}_{i}\|^{-q}$$
$$\left[\sum_{i=1}^{n} \|\mathbf{x} - \mathbf{x}_{i}\|^{-q}\right]^{-1/q} \leq \left[\max_{\mathbf{x}_{i}} \|\mathbf{x} - \mathbf{x}_{i}\|^{-q}\right]^{-1/q} \leq \left[\frac{1}{n} \sum_{i=1}^{n} \|\mathbf{x} - \mathbf{x}_{i}\|^{-q}\right]^{-1/q}$$
$$\frac{-1/q}{\left[P_{K_{q},\xi_{n}}(\mathbf{x})\right]^{-1/q}} \leq d(\mathbf{x}, \mathbf{X}_{n}) \leq \left[P_{K_{q},\xi_{n}}(\mathbf{x})\right]^{-1/q}$$

with $K_q(\mathbf{x}, \mathbf{x}') = \|\mathbf{x} - \mathbf{x}'\|^{-q}$ the Riesz kernel with parameter q(K_q is singular, does not define a RKHS) and ξ_n the empirical measure on \mathbf{X}_n

For *n* fixed, $[P_{K_q,\xi_n}(\mathbf{x})]^{-1/q} \to d(\mathbf{x}, \mathbf{X}_n)$, uniformly in \mathbf{x} and \mathbf{X}_n , as $q \to \infty$

Relaxation with other kernels than K_q :

 $\mathcal{K}(\mathbf{x}, \mathbf{x}') = \psi(||\mathbf{x} - \mathbf{x}'||)$ (isotropic) with $\psi: [0, \infty) \mapsto (0, +\infty]$ continuous, strictly decreasing ($\psi(0) = \infty$ is allowed) \rightarrow inverse function $\psi^{\langle -1 \rangle}(u)$ defined for $u \in (0, \psi(0)]$ and strictly decreasing too

9 / 54

Relaxation with other kernels than K_q :

 $\mathcal{K}(\mathbf{x}, \mathbf{x}') = \psi(||\mathbf{x} - \mathbf{x}'||)$ (isotropic) with $\psi: [0, \infty) \mapsto (0, +\infty]$ continuous, strictly decreasing $(\psi(0) = \infty$ is allowed) \rightarrow inverse function $\psi^{\langle -1 \rangle}(u)$ defined for $u \in (0, \psi(0)]$ and strictly decreasing too

In particular: γ -exponential family $K_{\gamma,\ell}(\mathbf{x}, \mathbf{x}') = \exp[-\|\mathbf{x} - \mathbf{x}'\|^{\gamma}/(\gamma \ell^{\gamma})], \gamma > 0$ $\gamma = 1 \implies$ exponential (Matérn 1/2) kernel, $\gamma = 2 \implies$ Gaussian kernel (K is not PD for $\gamma > 2$ but not necessarily important...)

Relaxation with other kernels than K_q :

 $\mathcal{K}(\mathbf{x}, \mathbf{x}') = \psi(\|\mathbf{x} - \mathbf{x}'\|)$ (isotropic) with $\psi: [0, \infty) \mapsto (0, +\infty]$ continuous, strictly decreasing $(\psi(0) = \infty$ is allowed) \rightarrow inverse function $\psi^{\langle -1 \rangle}(u)$ defined for $u \in (0, \psi(0)]$ and strictly decreasing too

In particular: γ -exponential family $K_{\gamma,\ell}(\mathbf{x}, \mathbf{x}') = \exp[-\|\mathbf{x} - \mathbf{x}'\|^{\gamma}/(\gamma \ell^{\gamma})], \gamma > 0$ $\gamma = 1 \implies$ exponential (Matérn 1/2) kernel, $\gamma = 2 \implies$ Gaussian kernel (K is not PD for $\gamma > 2$ but not necessarily important...)

$$-\gamma\,\ell^{\gamma}\log n - \gamma\,\ell^{\gamma}\log P_{\mathsf{K}_{\mathsf{e},\gamma,\ell},\boldsymbol{\xi}_{n}}(\mathsf{x}) \leq d^{\gamma}(\mathsf{x},\mathsf{X}_{n}) \leq -\gamma\,\ell^{\gamma}\log P_{\mathsf{K}_{\mathsf{e},\gamma,\ell},\boldsymbol{\xi}_{n}}(\mathsf{x})\,.$$

For *n* fixed, $-\gamma \ell^{\gamma} \log P_{K_{e,\gamma,\ell},\xi_n}(\mathbf{x}) \to d^{\gamma}(\mathbf{x}, \mathbf{X}_n)$, uniformly in **x** and **X**_n, as $\ell \to 0$

 ℓ_q -relaxation of $PR(\mathbf{X}_n) = \frac{1}{2} \min_{i,j} \|\mathbf{x}_i - \mathbf{x}_j\|$

Maximise
$$\underbrace{\frac{1}{2}\left(\frac{2}{n(n-1)}\sum_{i< j}\|\mathbf{x}_i - \mathbf{x}_j\|^{-q}\right)^{-1/q}}_{i< j}$$
 for some $q > 0$ (large)

$$\ell_{q}\text{-relaxation of } \mathsf{PR}(\mathbf{X}_{n}) = \frac{1}{2} \min_{i,j} \|\mathbf{x}_{i} - \mathbf{x}_{j}\|$$

$$\text{Maximise} \underbrace{\frac{1}{2} \left(\frac{2}{n(n-1)} \sum_{i < j} \|\mathbf{x}_{i} - \mathbf{x}_{j}\|^{-q} \right)^{-1/q}}_{\rightarrow \mathsf{PR}(\mathbf{X}_{n}) \text{ as } q \rightarrow \infty} \text{ for some } q > 0 \text{ (large)}$$

$$\text{equivalent to minimise } \mathscr{E}_{K_{q}}^{\neq}(\mathbf{X}_{n}) = \frac{2}{n(n-1)} \sum_{i < j} \|\mathbf{x}_{i} - \mathbf{x}_{j}\|^{-q} \text{ (= discrete energy)}}$$

L. Pronzato (UCA, CNRS, France) Kernel relaxation for space-filling design mODAa 13, Jul. 2023 10 / 54

$$\ell_{q}\text{-relaxation of } \mathsf{PR}(\mathbf{X}_{n}) = \frac{1}{2} \min_{i,j} \|\mathbf{x}_{i} - \mathbf{x}_{j}\|$$

$$\operatorname{Maximise} \underbrace{\frac{1}{2} \left(\frac{2}{n(n-1)} \sum_{i < j} \|\mathbf{x}_{i} - \mathbf{x}_{j}\|^{-q} \right)^{-1/q}}_{\rightarrow \mathsf{PR}(\mathbf{X}_{n}) \text{ as } q \rightarrow \infty} \text{ for some } q > 0 \text{ (large)}$$

$$\operatorname{equivalent to minimise} \mathscr{E}_{K_{q}} \neq (\mathbf{X}_{n}) = \frac{2}{n(n-1)} \sum_{i < j} \|\mathbf{x}_{i} - \mathbf{x}_{j}\|^{-q} \text{ (= discrete energy)}$$

$$\rightarrow \text{ continuous version:}$$

PB1: minimise $\int_{\mathscr{X}^2} \|\mathbf{x} - \mathbf{x}'\|^{-q} d\xi(\mathbf{x}) d\xi(\mathbf{x}') = \mathscr{E}_{K_q}(\xi) \text{ w.r.t. } \xi$

$$\ell_{q}\text{-relaxation of } \mathsf{PR}(\mathsf{X}_{n}) = \frac{1}{2} \min_{i,j} ||\mathsf{x}_{i} - \mathsf{x}_{j}||$$

$$\mathsf{Maximise} \underbrace{\frac{1}{2} \left(\frac{2}{n(n-1)} \sum_{i < j} ||\mathsf{x}_{i} - \mathsf{x}_{j}||^{-q} \right)^{-1/q}}_{\rightarrow \mathsf{PR}(\mathsf{X}_{n}) \text{ as } q \to \infty} \text{ for some } q > 0 \text{ (large)}$$

$$\overset{\rightarrow \mathsf{PR}(\mathsf{X}_{n}) \text{ as } q \to \infty}_{\text{equivalent to minimise } \mathscr{E}_{\mathsf{K}_{q}}^{\neq}(\mathsf{X}_{n}) = \frac{2}{n(n-1)} \sum_{i < j} ||\mathsf{x}_{i} - \mathsf{x}_{j}||^{-q} \text{ (= discrete energy)}}$$

$$\overset{\rightarrow \text{ continuous version:}}{\mathsf{PB1: minimise}} \underbrace{\int_{\mathscr{X}^{2}} ||\mathsf{x} - \mathsf{x}'||^{-q} \mathrm{d}\xi(\mathsf{x})\mathrm{d}\xi(\mathsf{x}')}_{=} = \mathscr{E}_{\mathsf{K}_{q}}(\xi) \text{ w.r.t. } \xi$$
For $q \ge d$, $\mathscr{E}_{\mathsf{K}_{q}}(\xi)$ is infinite for any non zero ξ
For $0 < q < d$ there exists a minimum-energy probability measure $\xi_{\mathsf{K}_{q}}^{+}$
When $d - 2 < q < d$, $\xi_{\mathsf{K}_{q}}^{+}$ has a density $\varphi_{\mathsf{K}_{q}}^{+}$ in \mathscr{X}

Example 2: $\mathscr{X} = \mathscr{B}_d(\mathbf{0}, \rho)$ $d - 2 < q < d: \varphi_{K_q}^+(\mathbf{x}) = \frac{C}{(\rho^2 - \|\mathbf{x}\|^2)^{(d-q)/2}}, \mathbf{x} \in \mathscr{X}$ (Landkof, 1972, p. 163)

(when d>2 and $2 < q \leq d-2$, $\xi^+_{\mathcal{K}_q}$ is uniform on the sphere $\mathcal{S}_d(\mathbf{0},\rho)$)

L. Pronzato (UCA, CNRS, France) Kernel relaxation for space-filling design mODAa 13

L. Pronzato (UCA, CNRS, France) Kernel relaxation for space-filling design mODAa 13, Jul. 2023 12 / 54

$$\mathsf{Maximise} \underbrace{-\frac{\gamma \ell^{\gamma}}{2^{\gamma}} \log \left[\frac{2}{n(n-1)} \sum_{i < j} K_{\gamma,\ell}(\mathbf{x}_i, \mathbf{x}_j)\right]}_{i < j} \text{ for some } \ell > 0 \text{ (small)}$$

L. Pronzato (UCA, CNRS, France) Kernel relaxation for space-filling design mODAa 13, Jul. 2023 12 / 54

$$\mathsf{Maximise} \underbrace{-\frac{\gamma \ell^{\gamma}}{2^{\gamma}} \log \left[\frac{2}{n(n-1)} \sum_{i < j} K_{\gamma,\ell}(\mathbf{x}_i, \mathbf{x}_j)\right]}_{\rightarrow \mathsf{PR}^{\gamma}(\mathbf{X}_n) \text{ as } \ell \rightarrow 0} \text{ for some } \ell > 0 \text{ (small)}$$

→ continuous version:

PB1: minimise

$$\int_{\mathscr{X}^2} K_{\gamma,\ell}(\mathbf{x},\mathbf{x}') \,\mathrm{d}\xi(\mathbf{x}) \mathrm{d}\xi(\mathbf{x}') = \mathscr{E}_{K_{\gamma,\ell}}(\xi)$$

$$\text{Maximise} \underbrace{-\frac{\gamma \ell^{\gamma}}{2^{\gamma}} \log \left[\frac{2}{n(n-1)} \sum_{i < j} K_{\gamma,\ell}(\mathbf{x}_i, \mathbf{x}_j)\right]}_{\rightarrow \mathsf{PR}^{\gamma}(\mathbf{X}_n) \text{ as } \ell \rightarrow 0} \text{ for some } \ell > 0 \text{ (small)}$$

→ continuous version: PB1: minimise

minimise
$$\int_{\mathscr{X}^2} \mathcal{K}_{\gamma,\ell}(\mathbf{x},\mathbf{x}') \,\mathrm{d}\xi(\mathbf{x}) \mathrm{d}\xi(\mathbf{x}') = \mathscr{E}_{\mathcal{K}_{\gamma,\ell}}(\xi)$$

There always exists a minimum-energy probability measure $\xi^+_{K_{\gamma,\ell}}$

For $K_{1,\ell}(\mathbf{x}, \mathbf{x}') = \exp(-\|\mathbf{x} - \mathbf{x}'\|/\ell)$ (the exponential kernel):

- For d = 1, $\mathscr{X} = [0, 1]$, $\xi_{K_{\theta}}^{+} = 1/(1 + 2\ell)\Lambda(\mathscr{X}) + (\delta_{0} + \delta_{1})\ell/(1 + 2\ell)$ $\rightarrow \xi_{K_{1,\ell}}^{+}$ has full support and $P_{K_{1,\ell},\xi_{K_{1,\ell}}^{+}}(\mathbf{x})$ is constant on \mathscr{X}
- For d > 1, not full support: for X̂ = ℬ₂(0, 1), ξ⁺_{K_{1,ℓ}} has positive mass on the surface of the circle and a spherically symmetric density in the interior of X̂, equal to zero close to the boundary

$$\mathsf{lf} \boxed{\mathscr{E}_{\mathcal{K}}(\cdot) \mathsf{ is convex}} (\gamma \in (0,2] \mathsf{ for } \mathcal{K}_{\gamma,\ell}(\mathbf{x},\mathbf{x}') = \exp[-\|\mathbf{x}-\mathbf{x}'\|^{\gamma}/(\gamma \ell^{\gamma})])$$

• → directional derivative (for bounded kernels)

$$F_{\mathscr{E}_{K}}(\xi, \delta_{\mathbf{x}}) = \lim_{\alpha \to 0^{+}} \frac{\mathscr{E}_{K}[(1-\alpha)\xi + \alpha\delta_{\mathbf{x}}] - \mathscr{E}_{K}(\xi)}{\alpha}$$
$$= 2[P_{K,\xi}(\mathbf{x}) - \mathscr{E}_{K}(\xi)]$$

$$\mathsf{lf} \boxed{\mathscr{E}_{\mathcal{K}}(\cdot) \mathsf{ is convex}} (\gamma \in (0,2] \mathsf{ for } \mathcal{K}_{\gamma,\ell}(\mathbf{x},\mathbf{x}') = \exp[-\|\mathbf{x}-\mathbf{x}'\|^{\gamma}/(\gamma \ell^{\gamma})])$$

● → directional derivative (for bounded kernels)

$$F_{\mathscr{E}_{\kappa}}(\xi, \delta_{\mathbf{x}}) = \lim_{\alpha \to 0^{+}} \frac{\mathscr{E}_{\kappa}[(1-\alpha)\xi + \alpha\delta_{\mathbf{x}}] - \mathscr{E}_{\kappa}(\xi)}{\alpha}$$
$$= 2[P_{\kappa,\xi}(\mathbf{x}) - \mathscr{E}_{\kappa}(\xi)]$$

• N&S condition for optimality ("Equivalence Theorem" – **ET**): ξ_{K}^{+} is optimal $\Leftrightarrow F_{\mathscr{E}_{K}}(\xi_{K}^{+}, \delta_{\mathbf{x}}) \geq 0$ for all $\mathbf{x} \in \mathscr{X}$

$$\Leftrightarrow P_{\mathcal{K},\xi_{\mathcal{K}}^+}(\mathbf{x}) - \mathscr{E}_{\mathcal{K}}(\xi_{\mathcal{K}}^+) \geq 0 \text{ for all } \mathbf{x} \in \mathscr{X}$$

$$\mathsf{lf} \boxed{\mathscr{E}_{\mathcal{K}}(\cdot) \mathsf{ is convex}} (\gamma \in (0,2] \mathsf{ for } \mathcal{K}_{\gamma,\ell}(\mathbf{x},\mathbf{x}') = \exp[-\|\mathbf{x}-\mathbf{x}'\|^{\gamma}/(\gamma \ell^{\gamma})])$$

→ directional derivative (for bounded kernels)

$$F_{\mathscr{E}_{\kappa}}(\xi, \delta_{\mathbf{x}}) = \lim_{\alpha \to 0^{+}} \frac{\mathscr{E}_{\kappa}[(1-\alpha)\xi + \alpha\delta_{\mathbf{x}}] - \mathscr{E}_{\kappa}(\xi)}{\alpha}$$
$$= 2[P_{\kappa,\xi}(\mathbf{x}) - \mathscr{E}_{\kappa}(\xi)]$$

• N&S condition for optimality ("Equivalence Theorem" – **ET**): ξ_{K}^{+} is optimal $\Leftrightarrow F_{\mathscr{E}_{K}}(\xi_{K}^{+}, \delta_{\mathbf{x}}) \geq 0$ for all $\mathbf{x} \in \mathscr{X}$ $\Leftrightarrow P_{K, \xi_{K}^{+}}(\mathbf{x}) - \mathscr{E}_{K}(\xi_{K}^{+}) \geq 0$ for all $\mathbf{x} \in \mathscr{X}$

• As
$$\int_{\mathscr{X}} P_{K,\xi}(\mathbf{x}) d\xi(\mathbf{x}) = \mathscr{E}_{K}(\xi)$$
 for any ξ
 $P_{K,\xi_{K}^{+}}(\mathbf{x}) = \mathscr{E}_{K}(\xi_{K}^{+})$ on $\operatorname{Supp}(\xi_{K}^{+})$

$$\mathsf{lf} \boxed{\mathscr{E}_{\mathsf{K}}(\cdot) \mathsf{ is convex}} (\gamma \in (0,2] \mathsf{ for } \mathsf{K}_{\gamma,\ell}(\mathsf{x},\mathsf{x}') = \exp[-\|\mathsf{x}-\mathsf{x}'\|^{\gamma}/(\gamma \ell^{\gamma})])$$

● → directional derivative (for bounded kernels)

$$F_{\mathscr{E}_{\mathcal{K}}}(\xi, \delta_{\mathbf{x}}) = \lim_{\alpha \to 0^{+}} \frac{\mathscr{E}_{\mathcal{K}}[(1-\alpha)\xi + \alpha\delta_{\mathbf{x}}] - \mathscr{E}_{\mathcal{K}}(\xi)}{\alpha}$$
$$= 2 \left[P_{\mathcal{K},\xi}(\mathbf{x}) - \mathscr{E}_{\mathcal{K}}(\xi) \right]$$

• N&S condition for optimality ("Equivalence Theorem" – **ET**): ξ_{K}^{+} is optimal $\Leftrightarrow F_{\mathscr{E}_{K}}(\xi_{K}^{+}, \delta_{\mathbf{x}}) \geq 0$ for all $\mathbf{x} \in \mathscr{X}$ $\Leftrightarrow \boxed{P_{K,\xi_{K}^{+}}(\mathbf{x}) - \mathscr{E}_{K}(\xi_{K}^{+}) \geq 0}$ for all $\mathbf{x} \in \mathscr{X}$

• As
$$\int_{\mathscr{X}} P_{K,\xi}(\mathbf{x}) d\xi(\mathbf{x}) = \mathscr{E}_{K}(\xi)$$
 for any ξ
 $P_{K,\xi_{K}^{+}}(\mathbf{x}) = \mathscr{E}_{K}(\xi_{K}^{+})$ on $\operatorname{Supp}(\xi_{K}^{+})$

•
$$(\bigstar) \Rightarrow \min_{\mathbf{x} \in \mathscr{X}} P_{K,\xi}(\mathbf{x}) \le \mathscr{E}_{K}(\xi)$$
 for any ξ , and thus

$$\boxed{\xi_{K}^{+} \text{ maximises } \min_{\mathbf{x} \in \mathscr{X}} P_{K,\xi}(\mathbf{x}) - \mathscr{E}_{K}(\xi)}$$

L. Pronzato (UCA, CNRS, France)

(★)

Example 3: $\mathscr{X} = [0,1], \ K(x,x') = (1+|x-x'|/\ell) \exp(-|x-x'|/\ell) \ (Matérn 3/2)$

Example 3: $\mathscr{X} = [0,1], \ K(x,x') = (1+|x-x'|/\ell) \exp(-|x-x'|/\ell) \ (Matérn 3/2)$

→ Numerical determination of ξ_{κ}^+ for $\ell = 1/(10\sqrt{3})$ (2000 points equally spaced in [0, 1], multiplicative algorithm)

 $\xi_{\mathcal{K}}^+$ in (0,1) (with $\xi_{\mathcal{K}}^+((0,1))\simeq 0.705)$

Example 3: $\mathscr{X} = [0,1], \ K(x,x') = (1+|x-x'|/\ell) \exp(-|x-x'|/\ell) \ (Matérn 3/2)$

→ Numerical determination of ξ_K^+ for $\ell = 1/(10\sqrt{3})$ (2000 points equally spaced in [0, 1], multiplicative algorithm)

Example 3: $\mathscr{X} = [0, 1], \ K(x, x') = (1 + |x - x'|/\ell) \exp(-|x - x'|/\ell) \ (Matérn 3/2)$

→ Exact calculation of ξ_K^+ — see (P&Zh, 2023a)

Example 3: $\mathscr{X} = [0, 1], \ \mathcal{K}(x, x') = (1 + |x - x'|/\ell) \exp(-|x - x'|/\ell) \ (Matérn 3/2)$

→ Exact calculation of ξ_K^+ — see (P&Zh, 2023a)

$$\begin{split} \ell &\geq \ell_0 \simeq 0.3980 \qquad \xi_K^+ = (\delta_0 + \delta_1)/2 \\ \ell_0 &> \ell \geq \ell_1 \simeq 0.3180 \qquad \xi_K^+ = m_0(\delta_0 + \delta_1) + (1 - 2 m_0)\delta_{1/2} \\ (\text{with } m_0 = m_0(\ell) \dots) \\ \ell_1 &> \ell \qquad \qquad \xi_K^+ = m_0'(\delta_0 + \delta_1) + m_a(\delta_a + \delta_{1-a}) + \alpha \Lambda([a, 1 - a]) \\ (\text{with } m_0' = m_0'(\ell), \ m_a = m_a(\ell), \ \alpha = \alpha(\ell), \ a = a(\ell)) \end{split}$$

 $\xi_{K}^{+}((0,1)) \simeq 0.705$

14 / 54

Discrete case: $X_n \rightarrow \text{empirical measure } \xi_n$ $\mathscr{E}_{\mathcal{K}}(\xi_n) = \operatorname{var}(\widehat{\theta}_{OLSE}^n) \text{ in } Y_x = \theta + Z_x \text{ with } \mathsf{E}\{Z_x\} = \mathsf{0}, \, \mathsf{E}\{Z_xZ_{x'}\} = \mathcal{K}(\mathbf{x}, \mathbf{x'})$

Discrete case: $\mathbf{X}_n \to \text{empirical measure } \xi_n$ $\mathscr{E}_{\mathcal{K}}(\xi_n) = \operatorname{var}(\widehat{\theta}_{OLSE}^n) \text{ in } Y_{\mathbf{x}} = \theta + Z_{\mathbf{x}} \text{ with } \mathsf{E}\{Z_{\mathbf{x}}\} = \mathsf{0}, \, \mathsf{E}\{Z_{\mathbf{x}}Z_{\mathbf{x}'}\} = \mathcal{K}(\mathbf{x}, \mathbf{x}')$

Greedy minimisation of $\mathscr{E}_{K}^{\neq}(X_{n})$, or Conditional gradient descent for $\mathscr{E}_{K}(\xi)$ (= Frank-Wolfe = Wynn's vertex-direction alg.)

(P&Zh, 2023b): if

 $q = q_n$ is such that $q_n / \log n \to \infty$ in $K_q(\mathbf{x}, \mathbf{x}') = \|\mathbf{x} - \mathbf{x}'\|^{-q}$, or $\ell = \ell_n$ is such that $\ell_n n^{1/d} (\log n)^{1/\gamma} \to 0$ in $K_{\gamma,\ell}(\mathbf{x}, \mathbf{x}')$,

then $\liminf_{n\to\infty}\mathsf{PR}(\boldsymbol{X}_n)/\operatorname{PR}_n^*\geq 1/2$ and $\limsup_{n\to\infty}\mathsf{CR}(\boldsymbol{X}_n)/\operatorname{CR}_n^*\leq 2$

Discrete case: $X_n \rightarrow \text{empirical measure } \xi_n$ $\mathscr{E}_K(\xi_n) = \operatorname{var}(\widehat{\theta}^n_{OLSE}) \text{ in } Y_x = \theta + Z_x \text{ with } \mathsf{E}\{Z_x\} = 0, \ \mathsf{E}\{Z_x Z_{x'}\} = K(x, x')$

Greedy minimisation of $\mathscr{E}_{K}^{\neq}(X_{n})$, or Conditional gradient descent for $\mathscr{E}_{K}(\xi)$ (= Frank-Wolfe = Wynn's vertex-direction alg.)

(P&Zh, 2023b): if

 $q = q_n$ is such that $q_n / \log n \to \infty$ in $K_q(\mathbf{x}, \mathbf{x}') = \|\mathbf{x} - \mathbf{x}'\|^{-q}$, or $\ell = \ell_n$ is such that $\ell_n n^{1/d} (\log n)^{1/\gamma} \to 0$ in $K_{\gamma,\ell}(\mathbf{x}, \mathbf{x}')$, then $\liminf_{n \to \infty} \operatorname{PR}(\mathbf{X}_n) / \operatorname{PR}_n^* \ge 1/2$ and $\limsup_{n \to \infty} \operatorname{CR}(\mathbf{X}_n) / \operatorname{CR}_n^* \le 2$

General statements about $\text{Supp}(\xi_{\mathcal{K}}^+)$:

• When $\[K \]$ is PD, translation-invariant, with $K(\mathbf{x}, \mathbf{x}') = \Psi(\mathbf{x} - \mathbf{x}')$

→ 2 conjectures (related to the non-existence of the continuous BLUE of β in the location model $Y(\mathbf{x}) = \beta + \varepsilon(\mathbf{x})$ where the errors $\varepsilon(\mathbf{x})$ have zero mean and covariance K)

- ξ_{K}^{+} is not of full support when Ψ is differentiable at $\mathbf{0}_{d}$
- When d > 1, ξ_K^+ is not of full support unless K is singular

 $\mathsf{Minimise} \ \mathsf{CR}(\mathbf{X}_n) = \max_{\mathbf{z} \in \mathscr{X}} \min_{\mathbf{x}_i} \|\mathbf{z} - \mathbf{x}_i\|$

Minimise $CR(\mathbf{X}_n) = \max_{\mathbf{z} \in \mathscr{X}} \min_{\mathbf{x}_i} \|\mathbf{z} - \mathbf{x}_i\|$

 ℓ_q -relaxation of $\min_{\mathbf{x}_i} \|\mathbf{z} - \mathbf{x}_i\|$

Minimise $\max_{\mathbf{z} \in \mathscr{X}} \left(\frac{1}{n} \sum_{i=1}^{n} \|\mathbf{z} - \mathbf{x}_i\|^{-q} \right)^{-1/q}$ for some q > 0

 $\mathsf{Minimise} \ \mathsf{CR}(\mathbf{X}_n) = \max_{\mathbf{z} \in \mathscr{X}} \min_{\mathbf{x}_i} \|\mathbf{z} - \mathbf{x}_i\|$

 ℓ_q -relaxation of $\min_{\mathbf{x}_i} \|\mathbf{z} - \mathbf{x}_i\|$

Minimise $\max_{\mathbf{z} \in \mathscr{X}} \left(\frac{1}{n} \sum_{i=1}^{n} \|\mathbf{z} - \mathbf{x}_i\|^{-q} \right)^{-1/q}$ for some q > 0

 \iff maximise min_{z \in X} $P_{K_q,\xi_n}(z)$

→ continuous version: **PB2** maximise $\min_{z \in \mathscr{X}} P_{K_a,\xi}(z)$

 $\mathsf{Minimise} \ \mathsf{CR}(\mathbf{X}_n) = \max_{\mathbf{z} \in \mathscr{X}} \min_{\mathbf{x}_i} \|\mathbf{z} - \mathbf{x}_i\|$

 ℓ_q -relaxation of $\min_{\mathbf{x}_i} \|\mathbf{z} - \mathbf{x}_i\|$

Minimise $\max_{\mathbf{z} \in \mathscr{X}} \left(\frac{1}{n} \sum_{i=1}^{n} \|\mathbf{z} - \mathbf{x}_i\|^{-q} \right)^{-1/q}$ for some q > 0

 $\iff \text{maximise min}_{z \in \mathscr{X}} P_{K_q, \xi_n}(z)$ $\Rightarrow \text{ continuous version: } \mathbf{PB2} \text{ maximise } \boxed{\min_{z \in \mathscr{X}} P_{K_q, \xi}(z)}$

Other kernels can be used, e.g., $K_{\gamma,\ell}(\mathbf{x},\mathbf{x}') = \exp[-\|\mathbf{x}-\mathbf{x}'\|^{\gamma}/(\gamma\ell^{\gamma})]$

PB2 is called continuous polarisation: concave, but difficult (non diff.)

 $\mathsf{Minimise} \ \mathsf{CR}(\mathbf{X}_n) = \max_{\mathbf{z} \in \mathscr{X}} \min_{\mathbf{x}_i} \|\mathbf{z} - \mathbf{x}_i\|$

 ℓ_q -relaxation of $\min_{\mathbf{x}_i} \|\mathbf{z} - \mathbf{x}_i\|$

Minimise $\max_{\mathbf{z} \in \mathscr{X}} \left(\frac{1}{n} \sum_{i=1}^{n} \|\mathbf{z} - \mathbf{x}_i\|^{-q} \right)^{-1/q}$ for some q > 0

 $\iff \text{maximise min}_{z \in \mathscr{X}} P_{K_q, \xi_n}(z)$ $\rightarrow \text{continuous version: PB2 maximise min}_{z \in \mathscr{X}} P_{K_q, \xi}(z)$

Other kernels can be used, e.g., $K_{\gamma,\ell}(\mathbf{x},\mathbf{x}') = \exp[-\|\mathbf{x}-\mathbf{x}'\|^{\gamma}/(\gamma\ell^{\gamma})]$

PB2 is called continuous polarisation: concave, but difficult (non diff.)

When $\mathscr{E}_{\mathcal{K}}(\cdot)$ is convex, $\xi_{\mathcal{K}}^+$ of **PB1** maximises $\min_{\mathbf{x}\in\mathscr{X}} P_{\mathcal{K},\xi}(\mathbf{x}) - \mathscr{E}_{\mathcal{K}}(\xi)$ if $\xi_{\mathcal{K}}^+$ has full support, it is also optimal for **PB2**

true for d = 1 when $K(x, x') = \psi(|x - x'|)$ with ψ convex, and for any d when $K = K_q$ (Riesz), $q \in (d - 2, d)$ (... but we conjecture it is not the case when d > 1 for nonsingular kernels)

Doubly *K*-relaxed covering

relax max and min in $CR(\mathbf{X}_n) = \max_{\mathbf{x} \in \mathscr{X}} \min_{\mathbf{x}_i} \|\mathbf{x} - \mathbf{x}_i\| \approx \max_{\mathbf{x} \in \mathscr{X}} P_{K_q,\xi_n}^{-1/q}(\mathbf{x})$

minimise
$$\left\{\int_{\mathscr{X}} \left[P_{K_q,\xi}^{-1/q}(\mathbf{x})\right]^q \mathrm{d}\mu(\mathbf{x})\right\}^{1/q} \twoheadrightarrow \min i i minimise \int_{\mathscr{X}} P_{K_q,\xi}^{-1}(\mathbf{x}) \mathrm{d}\mu(\mathbf{x})$$

L. Pronzato (UCA, CNRS, France)

Doubly *K*-relaxed covering

relax max and min in $CR(\mathbf{X}_n) = \max_{\mathbf{x} \in \mathscr{X}} \min_{\mathbf{x}_i} \|\mathbf{x} - \mathbf{x}_i\| \approx \max_{\mathbf{x} \in \mathscr{X}} P_{K_a, \xi_n}^{-1/q}(\mathbf{x})$

minimise
$$\left\{\int_{\mathscr{X}} \left[P_{K_q,\xi}^{-1/q}(\mathbf{x})\right]^q d\mu(\mathbf{x})\right\}^{1/q} \twoheadrightarrow \text{minimise } \int_{\mathscr{X}} P_{K_q,\xi}^{-1}(\mathbf{x}) d\mu(\mathbf{x})$$

= convex problem (strictly when K ISPD and μ equivalent to Λ) \rightarrow ET

$$\boldsymbol{\xi^*} \text{ is optimal } \Leftrightarrow \text{ for all } \mathbf{x}' \in \mathscr{X}, \ \int_{\mathscr{X}} \frac{K(\mathbf{x}, \mathbf{x}')}{P_{K, \boldsymbol{\xi^*}}^2(\mathbf{x})} \, \mathrm{d}\mu(\mathbf{x}) \leq \int_{\mathscr{X}} P_{K, \boldsymbol{\xi^*}}^{-1}(\mathbf{x}) \, \mathrm{d}\mu(\mathbf{x})$$

Doubly *K*-relaxed covering

relax max and min in $CR(\mathbf{X}_n) = \max_{\mathbf{x} \in \mathscr{X}} \min_{\mathbf{x}_i} \|\mathbf{x} - \mathbf{x}_i\| \approx \max_{\mathbf{x} \in \mathscr{X}} P_{K_a, \xi_n}^{-1/q}(\mathbf{x})$

minimise
$$\left\{\int_{\mathscr{X}} \left[P_{K_{q},\xi}^{-1/q}(\mathbf{x})\right]^{q} \mathrm{d}\mu(\mathbf{x})\right\}^{1/q} \blacksquare$$
 minimise $\int_{\mathscr{X}} P_{K,\xi}^{-1}(\mathbf{x}) \mathrm{d}\mu(\mathbf{x})$

= convex problem (strictly when K ISPD and μ equivalent to Λ) \rightarrow **ET**

$$\boldsymbol{\xi^*} \text{ is optimal } \Leftrightarrow \text{ for all } \mathbf{x}' \in \mathscr{X}, \ \int_{\mathscr{X}} \frac{K(\mathbf{x}, \mathbf{x}')}{P_{K, \boldsymbol{\xi^*}}^2(\mathbf{x})} \, \mathrm{d}\mu(\mathbf{x}) \leq \int_{\mathscr{X}} P_{K, \boldsymbol{\xi^*}}^{-1}(\mathbf{x}) \, \mathrm{d}\mu(\mathbf{x})$$

Discretisation of μ **:**

→ Replace μ by μ_N uniform on $\mathscr{X}_N = \{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(N)}\}$

→ minimise $\Phi_1[\mathbf{M}_{\mathcal{K}}(\xi)] = \operatorname{trace}\left[\frac{1}{N}\mathbf{M}_{\mathcal{K}}^{-1}(\xi)\right]$ (<u>A-optimal design</u>) with

 $\begin{aligned} \mathbf{M}_{\mathcal{K}}(\xi) = &\operatorname{diag}\{P_{\mathcal{K},\xi}(\mathbf{x}^{(j)}), j = 1, \dots, N\} = \int_{\mathscr{X}} \operatorname{diag}\{\mathcal{K}(\mathbf{x}^{(j)}, \mathbf{x}), j = 1, \dots, N\} \, \mathrm{d}\xi(\mathbf{x}) \\ & \text{(considered in (P&Zh, 2019) for } \mathcal{K} = \mathcal{K}_q) \end{aligned}$

Example 4: n = 50 points in $\mathscr{X} = [0, 1]^2$ for K_q with q = 10

methan incremental design by vertex-direction alg. $(\mathbf{x}_1 = (1/2, 1/2))$

 $(\mathscr{X}_N = 33 \times 33 \text{ regular grid}, \xi \text{ supported on the } 32 \times 32 \text{ interlaced grid})$

 $(radius = CR(\mathbf{X}_n))$

L. Pronzato (UCA, CNRS, France)

Kernel relaxation for space-filling design

5 Minimisation of the L_s -mean quantisation error

 ℓ_q -relaxation of $E_{s,\mu}(\mathbf{X}_n) = (\int_{\mathscr{X}} \min_{\mathbf{x}_i} \|\mathbf{x} - \mathbf{x}_i\|^s \, \mathrm{d}\mu(\mathbf{x}))^{1/s}$, s > 0

Replace $d(\mathbf{x}, \mathbf{X}_n) = \min_{\mathbf{x}_i} \|\mathbf{x} - \mathbf{x}_i\|$ by $[P_{K_q, \xi_n}(\mathbf{x})]^{-1/q}$

- → minimise $E_{K_q,s,\mu}(\mathbf{X}_n) = \left[\int_{\mathscr{X}} \left(P_{K_q,\xi_n}(\mathbf{x})\right)^{-s/q} d\mu(\mathbf{x})\right]^{1/s}$ for s, q > 0
- → continuous ver<u>sion:</u>

PB3: minimise
$$e_{K_q,s,\mu}(\boldsymbol{\xi}) = \left[\int_{\mathscr{X}} P_{K_q,\boldsymbol{\xi}}^{-s/q}(\mathbf{x}) d\mu(\mathbf{x})\right]^{1/s}$$
, $s, q > 0$

[= extension of (P&Zh, 2019) where only the case q = s is considered]

5 Minimisation of the L_s -mean quantisation error

 ℓ_q -relaxation of $E_{s,\mu}(\mathbf{X}_n) = (\int_{\mathscr{X}} \min_{\mathbf{x}_i} \|\mathbf{x} - \mathbf{x}_i\|^s \, \mathrm{d}\mu(\mathbf{x}))^{1/s}$, s > 0

Replace $d(\mathbf{x}, \mathbf{X}_n) = \min_{\mathbf{x}_i} \|\mathbf{x} - \mathbf{x}_i\|$ by $\left[P_{K_q, \xi_n}(\mathbf{x})\right]^{-1/q}$

- $\rightarrow \text{ minimise } E_{K_q,s,\mu}(\mathbf{X}_n) = \left[\int_{\mathscr{X}} \left(P_{K_q,\boldsymbol{\xi}_n}(\mathbf{x}) \right)^{-s/q} \, \mathrm{d}\mu(\mathbf{x}) \right]^{1/s} \text{ for } s,q > 0$
- → continuous ver<u>sion:</u>

PB3: minimise
$$e_{K_q,s,\mu}(\boldsymbol{\xi}) = \left[\int_{\mathscr{X}} P_{K_q,\boldsymbol{\xi}}^{-s/q}(\mathbf{x}) d\mu(\mathbf{x})\right]^{1/s}$$
, $s,q > 0$

[= extension of (P&Zh, 2019) where only the case q = s is considered]

 μ equivalent to Λ , $q \in (0, d) \rightarrow e^s_{K_q, s, \mu}(\cdot)$ is convex and differentiable \rightarrow **ET**

$$\xi^*_{\boldsymbol{q}}$$
 is optimal \Leftrightarrow for all $\mathbf{x}' \in \mathscr{X}$, $\int_{\mathscr{X}} \frac{K_{\boldsymbol{q}}(\mathbf{x},\mathbf{x}')}{P^{1+s/q}_{K_{\boldsymbol{q}},\boldsymbol{\xi}^*_{\boldsymbol{q}}}(\mathbf{x})} \,\mathrm{d}\mu(\mathbf{x}) \leq e^s_{K_{\boldsymbol{q}},s,\mu}(\xi^*_{\boldsymbol{q}})$

Discretisation of μ **:**

→ Replace μ by μ_N uniform on $\mathscr{X}_N = \{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(N)}\}$:

 $\rightarrow \boxed{\text{minimise } e_{K_q,s,\mu_N}^q(\xi) = \left[\text{trace} \left(\frac{1}{N} \mathsf{M}_{K_q}^{-p}(\xi) \right) \right]^{1/p}}_{\mathsf{M}_K(\xi) = \int_{\mathscr{X}} \text{diag}\{K(\mathbf{x}^{(j)}, \mathbf{x}), j = 1, \dots, N\} \, \mathrm{d}\xi(\mathbf{x})} \left(\frac{\Phi_p \text{-optimal design}}{\Phi_p \text{-optimal design}}, p = s/q \right)}$

$$\mathcal{E}_{\mathcal{K}_{\gamma,\ell},\mathfrak{s},\mu}(\mathbf{X}_n) = \ell \, \gamma^{1/\gamma} \left(\int_{\mathscr{X}} \left[-\log P_{\mathcal{K}_{\mathbf{e},\gamma,\ell},\xi_{n,\mathbf{e}}}(\mathbf{x}) \right]^{\mathfrak{s}/\gamma} \, \mathrm{d}\mu(\mathbf{x})
ight)^{1/\mathfrak{s}}$$

$$E_{\mathcal{K}_{\gamma,\ell},s,\mu}(\mathbf{X}_n) = \ell \gamma^{1/\gamma} \left(\int_{\mathscr{X}} \left[-\log P_{\mathcal{K}_{\mathsf{e},\gamma,\ell},\xi_{n,e}}(\mathbf{x}) \right]^{s/\gamma} \, \mathrm{d}\mu(\mathbf{x}) \right)^{1/s}$$

Simplification for $\gamma = s$

 $\implies E^s_{\mathcal{K}_{s,\ell},s,\mu}(\mathbf{X}_n) = -s\,\ell^s\int_{\mathscr{X}}\log P_{\mathcal{K}_{e,s,\ell},\xi_{n,e}}(\mathbf{x})\,\mathrm{d}\mu(\mathbf{x})\,\left(\rightarrow E^s_{s,\mu}(\mathbf{X}_n)\text{ as }\ell\rightarrow 0\right)$

21 / 54

$$E_{\mathcal{K}_{\gamma,\ell},s,\mu}(\mathbf{X}_n) = \ell \gamma^{1/\gamma} \left(\int_{\mathscr{X}} \left[-\log P_{\mathcal{K}_{\mathsf{e},\gamma,\ell},\xi_{n,e}}(\mathbf{x}) \right]^{s/\gamma} \, \mathrm{d}\mu(\mathbf{x}) \right)^{1/s}$$

Simplification for $\gamma = s$

 $\Longrightarrow E^{s}_{K_{s,\ell},s,\mu}(\mathbf{X}_{n}) = -s\,\ell^{s}\int_{\mathscr{X}}\log P_{K_{e,s,\ell},\xi_{n,e}}(\mathbf{x})\,\mathrm{d}\mu(\mathbf{x}) \ (\to E^{s}_{s,\mu}(\mathbf{X}_{n}) \text{ as } \ell \to 0)$

→ continuous version:
 e^s_{K_{s,ℓ},s,µ}(·) is convex (strictly when µ equivalent to Λ and s ∈ (0,2]) → ET
 ξ^{*}_s is optimal ⇔ for all x' ∈ X, ∫_X P^{K_{s,ℓ}(x,x')}/P^{K_{s,ℓ},ξ^{*}_s(x)} dµ(x) ≤ 1
 (but ξ^{*}_K is not of full support even when ξ⁺_{K_{s,ℓ}} is → Example 5)

$$E_{\mathcal{K}_{\gamma,\ell},s,\mu}(\mathbf{X}_n) = \ell \gamma^{1/\gamma} \left(\int_{\mathscr{X}} \left[-\log P_{\mathcal{K}_{\mathsf{e},\gamma,\ell},\xi_{n,e}}(\mathbf{x}) \right]^{s/\gamma} \, \mathrm{d}\mu(\mathbf{x}) \right)^{1/s}$$

Simplification for $\gamma = s$

 $\Longrightarrow E^{s}_{K_{s,\ell},s,\mu}(\mathsf{X}_{n}) = -s\,\ell^{s}\int_{\mathscr{X}}\log P_{K_{e,s,\ell},\xi_{n,e}}(\mathsf{x})\,\mathrm{d}\mu(\mathsf{x}) \ (\to E^{s}_{s,\mu}(\mathsf{X}_{n}) \text{ as } \ell \to 0)$

→ continuous version:

$$e^{s}_{K_{s,\ell},s,\mu}(\cdot)$$
 is convex (strictly when μ equivalent to Λ and $s \in (0,2]$) → ET
 ξ^{*}_{s} is optimal \Leftrightarrow for all $\mathbf{x}' \in \mathscr{X}$, $\int_{\mathscr{X}} \frac{K_{s,\ell}(\mathbf{x},\mathbf{x}')}{P_{K_{s,\ell},\xi^{*}_{s}}(\mathbf{x})} d\mu(\mathbf{x}) \leq 1$
(but ξ^{*}_{K} is not of full support even when $\xi^{+}_{K_{s,\ell}}$ is → Example 5)

Discretisation of μ :

→ Replace
$$\mu$$
 by μ_N uniform on $\mathscr{X}_N = \{\mathbf{x}^{(1)}, \dots, \mathbf{x}^{(N)}\}$:
→ minimise $e^s_{\mathcal{K}_{s,\ell},s,\mu_N}(\xi) = s \,\ell^s \log \left\{ \det^{-1/N}[\mathbf{M}_{\mathcal{K}_{s,\ell}}(\xi)] \right\}$ (D-optimal design)

$$\mathbf{M}_{\mathcal{K}}(\xi) = \int_{\mathscr{X}} \operatorname{diag}\{\mathcal{K}(\mathbf{x}^{(j)}, \mathbf{x}), j = 1, \dots, N\} \, \mathrm{d}\xi(\mathbf{x})$$

5 Minimisation of the Ls-mean quantisation error

Example 5: $\mathscr{X} = [0,1], \ K(x,x') = \exp(-|x-x'|/\ell) \ (\text{Matérn } 1/2), \ s = q = 1, \ \mu = \mathcal{U}_{\mathscr{X}} \text{ uniform on } \mathscr{X}$

Numerical determination of ξ_K^* for $\ell = 1/10$ (multiplicative algorithm):

ξ_K^*

5 Minimisation of the Ls-mean quantisation error

Example 5: $\mathscr{X} = [0,1]$, $K(x,x') = \exp(-|x-x'|/\ell)$ (Matérn 1/2), s = q = 1, $\mu = \mathcal{U}_{\mathscr{X}}$ uniform on \mathscr{X}

Numerical determination of ξ_K^* for $\ell = 1/10$ (multiplicative algorithm):

5 Minimisation of the Ls-mean quantisation error

Example 5: $\mathscr{X} = [0,1]$, $K(x,x') = \exp(-|x-x'|/\ell)$ (Matérn 1/2), s = q = 1, $\mu = \mathcal{U}_{\mathscr{X}}$ uniform on \mathscr{X}

Numerical determination of ξ_K^* for $\ell = 1/10$ (multiplicative algorithm):

Exact solution:

$$\begin{split} \ell &\geq 1/2 \quad \xi_K^* = \delta_{1/2} \\ 1/2 > \ell \quad \xi_K^* = \ell \left(\delta_\ell + \delta_{1-\ell} \right) + (1 - 2\ell) \Lambda([\ell, 1 - \ell]) \\ (\text{and } \xi_K^* \to \mu = \mathcal{U}_{\mathscr{X}} \text{ when } \ell \to 0) \end{split}$$

6 Conclusions

 After kernel relaxation, the packing, covering and quantisation problems are related to standard Φ_p-optimal design, including A- and D-optimal design

6 Conclusions

- After kernel relaxation, the packing, covering and quantisation problems are related to standard Φ_p-optimal design, including A- and D-optimal design
- Gradient-type descent (vertex-direction) methods can be used for incremental constructions (→ kernel herding of machine learning)

6 Conclusions

- After kernel relaxation, the packing, covering and quantisation problems are related to standard Φ_p-optimal design, including A- and D-optimal design
- Gradient-type descent (vertex-direction) methods can be used for incremental constructions (→ kernel herding of machine learning)
- Several theoretical questions remain open and are challenging, concerning the support of a minimum-energy probability measure (related to the existence of a minimum-energy signed measure of total mass one and to the existence of the continuous BLUE in the location model with correlated errors), in connection with the properties of K

Thank you for your attention!

- Graf, S., Luschgy, H., 2000. Foundations of Quantization for Probability Distributions. Springer, Berlin.
- Krieg, D., Sonnleitner, M., 2020. Random points are optimal for the approximation of Sobolev functions. arXiv preprint arXiv:2009.11275.
- Landkof, N., 1972. Foundations of Modern Potential Theory. Springer, Berlin.
- Narcowich, F., Ward, J., Wendland, H., 2005. Sobolev bounds on functions with scattered zeros, with applications to radial basis function surface fitting. Mathematics of Computation 74 (250), 743–763.
- Pagès, G., 1997. A space quantization method for numerical integration. Journal of Computational and Applied Mathematics 89 (1), 1–38.
- Pronzato, L., Zhigljavsky, A., 2019. Measures minimizing regularized dispersion. Journal of Scientific Computing 78 (3), 1550–1570.
- Pronzato, L., Zhigljavsky, A., 2023a. BLUE against OLSE in the location model: energy minimization and asymptotic considerations. Statistical Papers (to appear), doi.org/10.1007/s00362-023-01423-2, hal-03909349.
- Pronzato, L., Zhigljavsky, A., 2023b. Quasi-uniform designs with asymptotically optimal and near-optimal uniformity constant. Journal of Approximation Theory 294 (105931), hal-03494864, arXiv:2112.10401.
- Schaback, R., Wendland, H., 2006. Kernel techniques: from machine learning to meshless methods. Acta Numerica 15, 543–639.

L. Pronzato (UCA, CNRS, France)

Kernel relaxation for space-filling design