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Quadratic Regression

We consider the quadratic regression model in one covariate

Yi=f(X;))"B +¢;
=Bo+PiXi+ PaXP+e;, i=1,....n.

X; are iid random variables in R.

f(x) = (1,x,x%)7.

B = (Bo, B1,P2)" is the parameter vector.

* ¢; are independent, homoscedastic random errors with E(g;) = 0, Var(e;) = 2 > 0.
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Massive Data Setting

Density fx(x) of X; known. We want to find a design £ with density f¢(x) such that
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Massive Data Setting

Density fx(x) of X; known. We want to find a design £ with density f¢(x) such that
® fe(x) < fx(x) so that £ generates a subsample of the X;.
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Massive Data Setting

Density fx(x) of X; known. We want to find a design £ with density f¢(x) such that
® fe(x) < fx(x) so that £ generates a subsample of the X;.
* [ fe(x)dx =, a is the percentage of the full data to be selected.
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Massive Data Setting

Density fx(x) of X; known. We want to find a design £ with density f¢(x) such that
* fe(x) < fx(x) so that £ generates a subsample of the X;.
* [ fe(x)dx =, ais the percentage of the full data to be selected.
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D-optimality

We define the information matrix as

M) = [ FCOFC) e (x) dx.

We want to find the D-optimal design, i.e. £* that maximizes

V(&) = det(M(¢)).
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Sensitivity Function

Sensitivity function ¢(x, &) from £ to a single point measure &, at point x

P(x.€) = af (x)'M(E) ().

P(x,€) is a polynomial of degree 4 in x.
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Equivalence Theorem for Quadratic Regression

Assume fx(x) is symmetric.
Theorem

The design £ is D-optimal if and only if there exist X* c R and a threshold
s* such that
(i) the D-optimal design £* is given by
) fx(x) ifxeX”

o) = { 0 otherwise
(i) Y(x,£7) >s* for x e X*, and
(i) P(x,&*) <s* for x ¢ X*,
where X* is the union of at most three symmetrically placed intervals.

E.g. X" =(-00,-a]Ju[-b,b]U[a,0), a>b>0. D
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Equivalence Theorem for Quadratic Regression
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Density of the optimal design (red) and the standard normal distribution (blue)

and sensitivity function (lower panel) for a = 0.3. D
Application of [Sahm and Schwabe, 2001]; see also: [Pronzato and Wang, 2021].
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Uniform Distribution - no surprise
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and sensitivity function (lower panel).
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Uniform Distribution - no surprise
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Uniform Distribution - no surprise
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Uniform Distribution - no surprise
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Uniform Distribution - no surprise
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Uniform Distribution - no surprise
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Uniform Distribution - no surprise
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Uniform Distribution - no surprise
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Uniform Distribution - no surprise
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Density of the optimal design (red) and the uniform distribution (blue) D
and sensitivity function (lower panel).
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Uniform Distribution - no surprise
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t-distribution - very surprising!
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Density of the optimal design (red) and the t;-distribution (blue)

and sensitivity function (lower panel).
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t-distribution - very surprising!
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Density of the optimal design (red) and the t;-distribution (blue) D
and sensitivity function (lower panel).
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t-distribution - very surprising!
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t-distribution

very surprising!
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Density of the optimal design (red) and the t;-distribution (blue) D

and sensitivity function (lower panel).
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t-distribution - very surprising!
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Density of the optimal design (red) and the t;-distribution (blue) D
and sensitivity function (lower panel).
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t-distribution - very surprising!
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Density of the optimal design (red) and the t;-distribution (blue) D
and sensitivity function (lower panel).

Polynomial Regression // D-Optimal Subsampling Design for Polynomial Regression In One Covariate



T

t-distribution - very surprising!
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Density of the optimal design (red) and the t;-distribution (blue) D
and sensitivity function (lower panel).
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t-distribution - very surprising!
a=0.40

y function
k)

o o

S (2]

g
o
)

g
[}
=]

Sensitivity

25 0.0 25

X
Density of the optimal design (red) and the t;-distribution (blue) D
and sensitivity function (lower panel).
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t-distribution - very surprising!
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Density of the optimal design (red) and the t;-distribution (blue) D
and sensitivity function (lower panel).
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t-distribution - very surprising!
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t-distribution - very surprising!
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Mixture of Gaussians

-15 -10 -5 0 5 10 15

Sensitivity function

-15 -10 -5 0 5 10 15

Density of the optimal design (red) and a mixture of two normal distributions (que)D
and sensitivity function (lower panel) for o = 0.5.
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IBOSS-like Designs

Goal: Find a subsampling strategy independent of the distribution of the X;.
Idea: Subsampling design with three symmetrically placed intervals of measure a/3.
Like IBOSS [Wang et al., 2019] for linear regression.
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IBOSS-like Designs

Goal: Find a subsampling strategy independent of the distribution of the X;.

Idea: Subsampling design with three symmetrically placed intervals of measure a/3.
Like IBOSS [Wang et al., 2019] for linear regression.
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D-optimal design (red), IBOSS-like designx(yellow), and normal distributions (blue) D
for a =0.5.
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IBOSS-like Designs
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Efficiency of IBOSS-like designs
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Multiple Linear Regression

We consider the multiple linear regression model

Yi=f(X;)'B+¢;
=,Bo+51X,'1+--'+ﬂdX,'d+€,', i:1,...,n.

X are iid random vectors on RY.
f(x)=(1,x")".

B=(Bo,---,84)" is the d + 1-dimensional parameter vector.

[ ]

* &; are uncorrelated and homoscedastic errors with E(g;) = 0, Var(e;) = 2 > 0.

>
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Big Data Setting
Density fx(x) of X; known. We want to find a design £ with density fz(x) such that
* fe(x) < fx(x) so that £ generates a subsample of the X;.
* [ fe(x)dx =, v is the percentage of the full data to be selected.
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fx(x) (blue) for X; ~ N>(0,1,) and two possible f¢(x) (red) for a.=0.5. D
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Big Data Setting
Density fx(x) of X; known. We want to find a design £ with density fz(x) such that
* fe(x) < fx(x) so that £ generates a subsample of the X;.
* [ fe(x)dx =, « is the percentage of the full data to be selected.
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Example: X; ~N>(0,X), where aj? =1and p=0.5.
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Example: X; ~N>(0,X), where aj? =1and p=0.5.

Transform £ Y2X; - select units with largest euclidean distance.
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Example: X; ~N>(0,X), where aj? =1and p=0.5.
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Simplified Method

Instead of transforming the covariates with a root of the full covariance matrix X we only
scale the variance by

o? 0 o1 0

03 lop)

. ~1/2
and its root X / =

M
1}

0 O'CZI 0 Od
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Simplified Method

Instead of transforming the covariates with a root of the full covariance matrix X we only
scale the variance by

o? 0 o1 0
2
~ o . ~1/2 o
3= 2 and its root £° = 2
0 O'CZI 0 Od

Advantages:

* Lower computing time O(nd).

e ¥ is easier to estimate than X.
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Simplified Method

Example: X; ~ N>(0,X), where 02 =1, 03 =2 and p = 0.56.

X2
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4 5 6 3 i 4 5 6 3 i 4 5 6 ; i

Simplified Method (left), optimal subsampling design (middle), IBOSS (right).
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Simplified Method

Example: X; ~ N>(0,X), where 02 =1, 03 =2 and p=0.07 .
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Simplified Method (left), optimal subsampling design (middle), IBOSS (right).
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Simulation Study - Simplified Method - Normal Distribution

X; ~ Nsp(0,X) with compound symmetry.

= e = = = = = = 2~Oe—03-F_____i_____f
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Discussion & Qutlook

Quadratic Regression
e Interior interval may vanish for heavy-tailed distributions.

e Subsampling design with three symmetrically placed intervals of measure a/3 is highly
efficient w.r.t. the D-optimal subsampling design.

Multiple Linear Regression
e D-optimal subsample by transforming data by 2_1/2(X — ). Then select units with
largest euclidean distance.
e Simplified method (only transforming w.r.t. the variances) can be a preferred
alternative to IBOSS when correlations are small.
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Simulation Study - Normal Distribution

Xi~N50(0,Xx)
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3 x =50 (uncorrelated). p=0.5 (compound symmetry).

look on Multiple Linear Regre: i i Regression In One Covariate



Simulation Study - t3-Distribution

Xi~t3(0,Xx)
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D-optimal Subsampling Design

Let the covariates X; be distributed on RY with density fx(x), E(X;) =  and non-singular
covariance matrix X, such that the distribution of £ Y2(X; - ) is rotationally invariant.

Theorem
Then the density of the D-optimal subsampling design £ is

ff* (X) = fx(x)]]‘(x—p,)"'}:fl(x—,u,)an (X)’

where qq is the (1 - a)-quantile of |£7/%(X; - p)|3.
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T

Sensitivity Function

Directional derivative Fy(&,7n) from £ to n

Fu(6.1) = lim = (W((1-F +en) - W ().

Sensitivity function ¢ (x,&) from & to a single point measure
at point x

b(x,€) = (g +1) = Fp(€,&) = af (x) "M(&) ().

>
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