Torsten Reuter mODa13
July 10, 2023

D-Optimal Subsampling Design for Polynomial Regression In One Covariate

Joint work with Rainer Schwabe

Quadratic Regression

We consider the quadratic regression model in one covariate

$$Y_i = \mathbf{f}(X_i)^{\mathsf{T}} \boldsymbol{\beta} + \varepsilon_i$$

= $\beta_0 + \beta_1 X_i + \beta_2 X_i^2 + \varepsilon_i, \quad i = 1, ..., n.$

- X_i are iid random variables in \mathbb{R} .
- $\mathbf{f}(x) = (1, x, x^2)^{\mathsf{T}}$.
- $\beta = (\beta_0, \beta_1, \beta_2)^{\mathsf{T}}$ is the parameter vector.
- ε_i are independent, homoscedastic random errors with $\mathsf{E}(\varepsilon_i) = 0$, $\mathsf{Var}(\varepsilon_i) = \sigma_\varepsilon^2 > 0$.

Density $f_X(x)$ of X_i known. We want to find a design ξ with density $f_{\xi}(x)$ such that

Density $f_X(x)$ of X_i known. We want to find a design ξ with density $f_{\xi}(x)$ such that

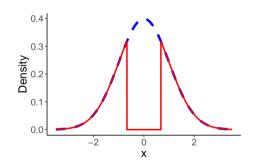
• $f_{\xi}(x) \leq f_{X}(x)$ so that ξ generates a subsample of the X_{i} .

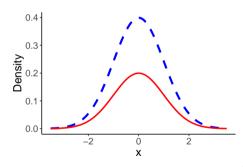
Density $f_X(x)$ of X_i known. We want to find a design ξ with density $f_{\xi}(x)$ such that

- $f_{\xi}(x) \leq f_{X}(x)$ so that ξ generates a subsample of the X_{i} .
- $\int f_{\xi}(x) dx = \alpha$, α is the percentage of the full data to be selected.

Density $f_X(x)$ of X_i known. We want to find a design ξ with density $f_{\xi}(x)$ such that

- $f_{\xi}(x) \le f_X(x)$ so that ξ generates a subsample of the X_i .
- $\int f_{\xi}(x) dx = \alpha$, α is the percentage of the full data to be selected.





 $f_X(x)$ (blue) for $X_i \sim \mathcal{N}(0,1)$ and two possible $f_{\xi}(x)$ (red) for $\alpha = 0.5$.

D-optimality

We define the information matrix as

$$\mathbf{M}(\xi) = \int \mathbf{f}(x)\mathbf{f}(x)^{\mathsf{T}}f_{\xi}(x)\,\mathrm{d}x.$$

We want to find the *D*-optimal design, i.e. ξ^* that maximizes

$$\Psi(\xi) = \det(\mathbf{M}(\xi)).$$

Sensitivity Function

Sensitivity function $\psi(x,\xi)$ from ξ to a single point measure ξ_x at point x

$$\psi(\mathbf{x},\xi) = \alpha \mathbf{f}(\mathbf{x})^{\mathsf{T}} \mathbf{M}(\xi)^{-1} \mathbf{f}(\mathbf{x}).$$

 $\psi(x,\xi)$ is a polynomial of degree 4 in x.

Equivalence Theorem for Quadratic Regression

Assume $f_X(x)$ is symmetric.

Theorem

The design ξ^* is D-optimal if and only if there exist $\mathcal{X}^* \subset \mathbb{R}$ and a threshold s* such that

(i) the D-optimal design ξ^* is given by

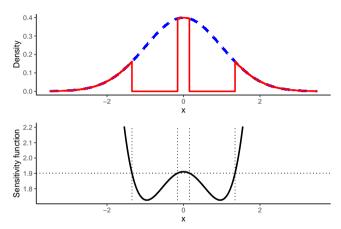
$$f_{\xi^*}(x) = \begin{cases} f_X(x) & \text{if } x \in \mathcal{X}^* \\ 0 & \text{otherwise} \end{cases}$$

- (ii) $\psi(x,\xi^*) \geq s^*$ for $x \in \mathcal{X}^*$, and
- (iii) $\psi(x,\xi^*) < s^*$ for $x \notin \mathcal{X}^*$,

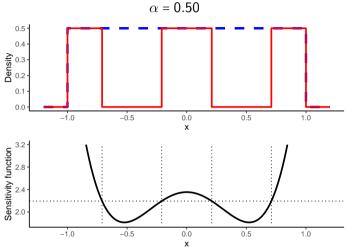
where \mathcal{X}^* is the union of at most three symmetrically placed intervals.

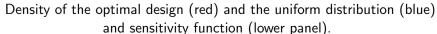
E.g.
$$\mathcal{X}^* = (-\infty, -a] \cup [-b, b] \cup [a, \infty), a > b > 0.$$

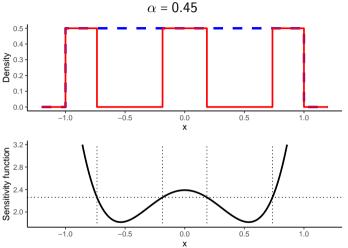
Equivalence Theorem for Quadratic Regression

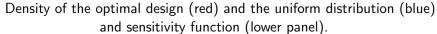


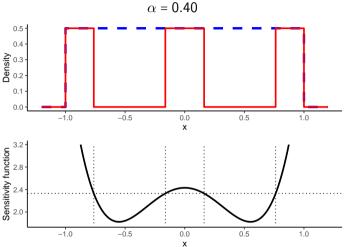
Density of the optimal design (red) and the standard normal distribution (blue) and sensitivity function (lower panel) for α = 0.3. Application of [Sahm and Schwabe, 2001]; see also: [Pronzato and Wang, 2021].

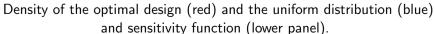


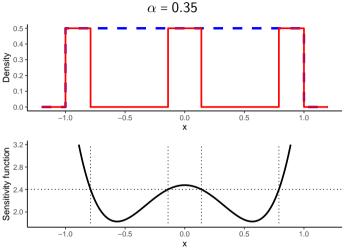


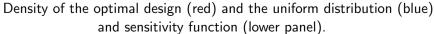


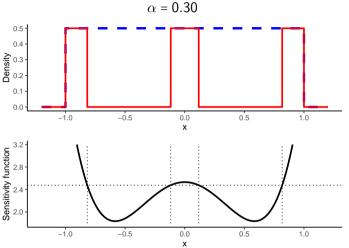


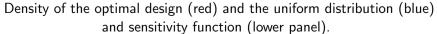


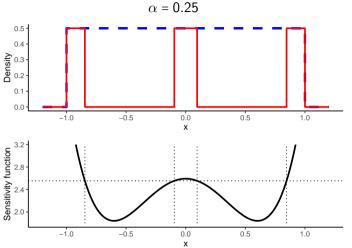


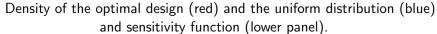


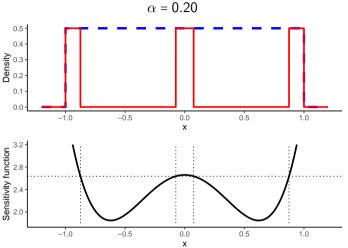




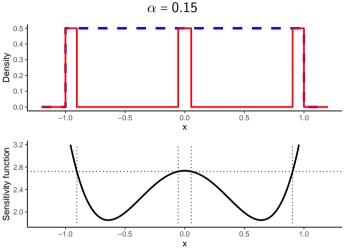


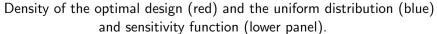


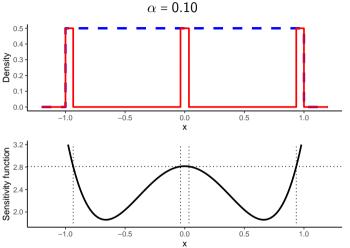


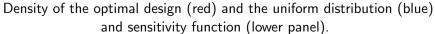


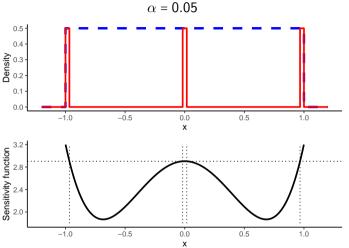
Density of the optimal design (red) and the uniform distribution (blue) and sensitivity function (lower panel).

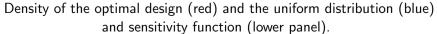


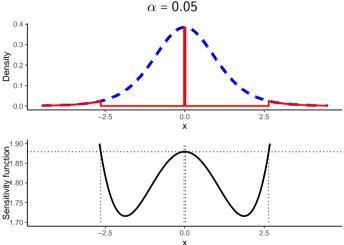


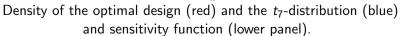


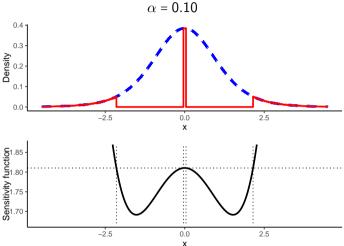


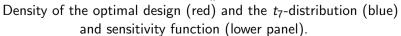


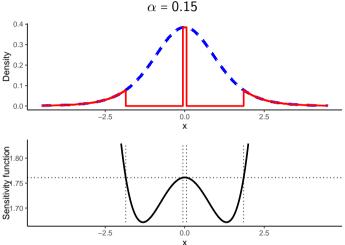


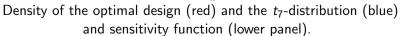


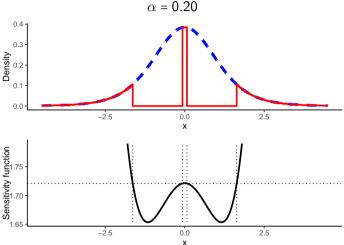




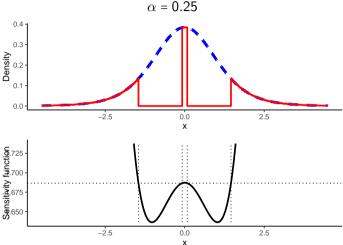


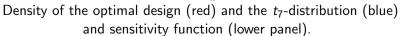


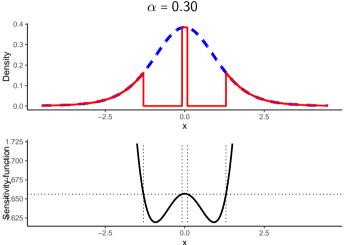


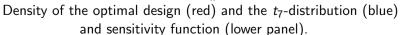


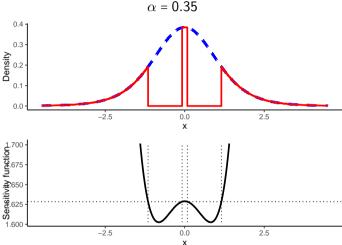
Density of the optimal design (red) and the t_7 -distribution (blue) and sensitivity function (lower panel).

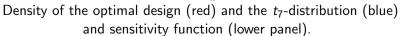


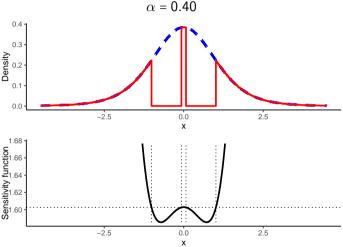


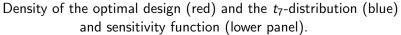


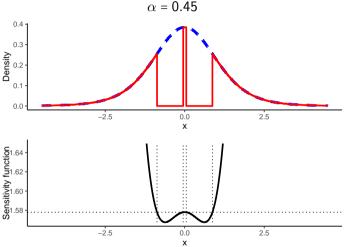


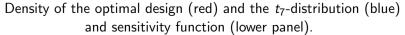


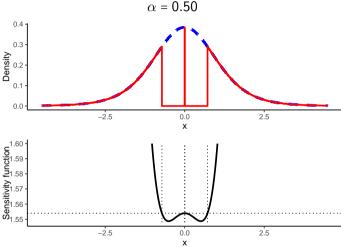


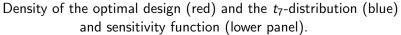


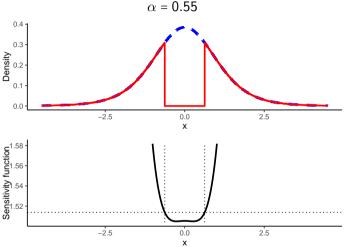






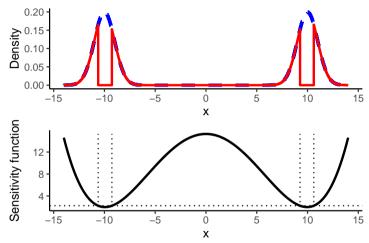






Density of the optimal design (red) and the t_7 -distribution (blue) and sensitivity function (lower panel).

Mixture of Gaussians



Density of the optimal design (red) and a mixture of two normal distributions (blue) and sensitivity function (lower panel) for $\alpha = 0.5$.

IBOSS-like Designs

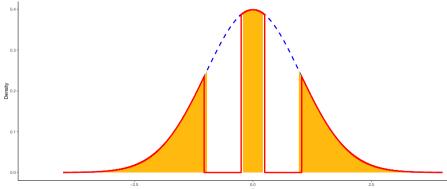
Goal: Find a subsampling strategy independent of the distribution of the X_i .

Idea: Subsampling design with three symmetrically placed intervals of measure $\alpha/3$. Like IBOSS [Wang et al., 2019] for linear regression.

IBOSS-like Designs

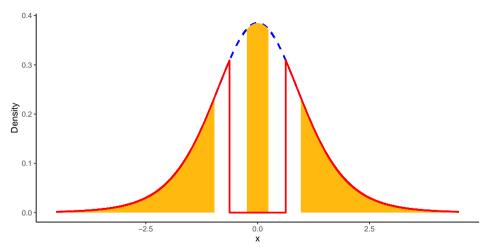
Goal: Find a subsampling strategy independent of the distribution of the X_i .

Idea: Subsampling design with three symmetrically placed intervals of measure $\alpha/3$. Like IBOSS [Wang et al., 2019] for linear regression.



D-optimal design (red), IBOSS-like design (yellow), and normal distributions (blue) for $\alpha = 0.5$.

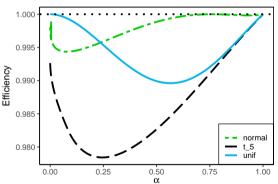
IBOSS-like Designs



D-optimal design (red), IBOSS-like design (yellow), and t_7 -distributions (blue) for $\alpha = 0.55$.

Efficiency of IBOSS-like designs

$$\mathsf{eff}_{D,\alpha}(\xi_{\alpha}^{\mathit{IBOSS}}) = \left(\frac{\mathsf{det}(\mathbf{M}(\xi_{\alpha}^{\mathit{IBOSS}}))}{\mathsf{det}(\mathbf{M}(\xi_{\alpha}^*))}\right)^{1/3},$$



Efficiencies of IBOSS-like designs for standard normal (green), t_5 (black), and uniform (blue) distributions.

Multiple Linear Regression

We consider the multiple linear regression model

$$Y_i = \mathbf{f}(\mathbf{X}_i)^{\mathsf{T}} \boldsymbol{\beta} + \varepsilon_i$$

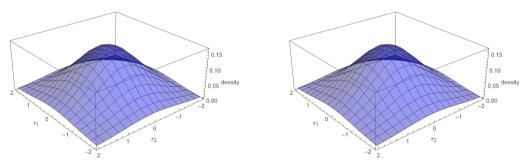
= $\beta_0 + \beta_1 X_{i1} + \dots + \beta_d X_{id} + \varepsilon_i, \quad i = 1, \dots, n.$

- X_i are iid random vectors on \mathbb{R}^d .
- $\mathbf{f}(\mathbf{x}) = (1, \mathbf{x}^{\mathsf{T}})^{\mathsf{T}}$.
- $\beta = (\beta_0, \dots, \beta_d)^T$ is the d + 1-dimensional parameter vector.
- ε_i are uncorrelated and homoscedastic errors with $\mathsf{E}(\varepsilon_i) = 0$, $\mathsf{Var}(\varepsilon_i) = \sigma_\varepsilon^2 > 0$.

Big Data Setting

Density $f_{\mathbf{X}}(\mathbf{x})$ of \mathbf{X}_i known. We want to find a design ξ with density $f_{\xi}(\mathbf{x})$ such that

- $f_{\xi}(\mathbf{x}) \leq f_{\mathbf{X}}(\mathbf{x})$ so that ξ generates a subsample of the \mathbf{X}_{i} .
- $\int f_{\xi}(\mathbf{x}) d\mathbf{x} = \alpha$, α is the percentage of the full data to be selected.

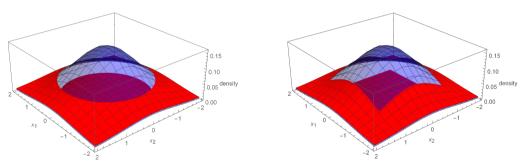


 $f_{\mathbf{X}}(\mathbf{x})$ (blue) for $\mathbf{X}_i \sim \mathcal{N}_2(\mathbf{0}, \mathbb{I}_2)$ and two possible $f_{\mathcal{E}}(\mathbf{x})$ (red) for $\alpha = 0.5$.

Big Data Setting

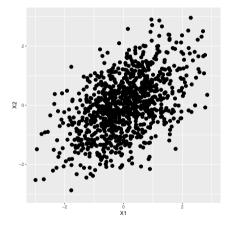
Density $f_{\mathbf{X}}(\mathbf{x})$ of \mathbf{X}_i known. We want to find a design ξ with density $f_{\xi}(\mathbf{x})$ such that

- $f_{\xi}(\mathbf{x}) \leq f_{\mathbf{X}}(\mathbf{x})$ so that ξ generates a subsample of the \mathbf{X}_i .
- $\int f_{\xi}(\mathbf{x}) d\mathbf{x} = \alpha$, α is the percentage of the full data to be selected.



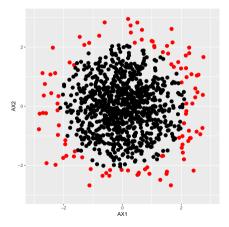
 $f_{\mathbf{X}}(\mathbf{x})$ (blue) for $\mathbf{X}_i \sim \mathcal{N}_2(\mathbf{0}, \mathbb{I}_2)$ and two possible $f_{\xi}(\mathbf{x})$ (red) for $\alpha = 0.5$.

Example: $X_i \sim \mathcal{N}_2(\mathbf{0}, \mathbf{\Sigma})$, where $\sigma_i^2 = 1$ and $\rho = 0.5$.

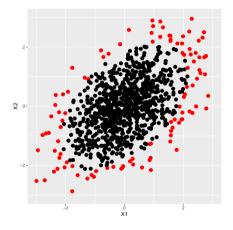


Example: $X_i \sim \mathcal{N}_2(\mathbf{0}, \mathbf{\Sigma})$, where $\sigma_i^2 = 1$ and $\rho = 0.5$.

Transform $\mathbf{\Sigma}^{-1/2}\mathbf{X}_i \rightarrow \text{select units with largest euclidean distance.}$



Example: $X_i \sim \mathcal{N}_2(\mathbf{0}, \mathbf{\Sigma})$, where $\sigma_i^2 = 1$ and $\rho = 0.5$.



Instead of transforming the covariates with a root of the full covariance matrix Σ we only scale the variance by

$$\tilde{\mathbf{\Sigma}} = \begin{pmatrix} \sigma_1^2 & & \mathbf{0} \\ & \sigma_2^2 & & \\ & & \ddots & \\ \mathbf{0} & & & \sigma_d^2 \end{pmatrix} \text{ and its root } \tilde{\mathbf{\Sigma}}^{1/2} = \begin{pmatrix} \sigma_1 & & \mathbf{0} \\ & \sigma_2 & & \\ & & \ddots & \\ \mathbf{0} & & & \sigma_d \end{pmatrix}.$$

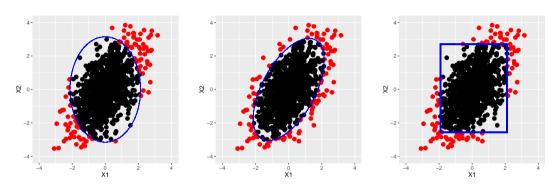
Instead of transforming the covariates with a root of the full covariance matrix Σ we only scale the variance by

$$\tilde{\mathbf{\Sigma}} = \begin{pmatrix} \sigma_1^2 & & \mathbf{0} \\ & \sigma_2^2 & & \\ & & \ddots & \\ \mathbf{0} & & & \sigma_d^2 \end{pmatrix} \text{ and its root } \tilde{\mathbf{\Sigma}}^{1/2} = \begin{pmatrix} \sigma_1 & & \mathbf{0} \\ & \sigma_2 & & \\ & & \ddots & \\ \mathbf{0} & & & \sigma_d \end{pmatrix}.$$

Advantages:

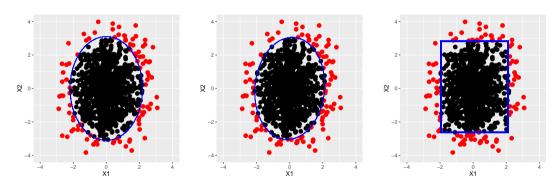
- Lower computing time $\mathcal{O}(nd)$.
- $\tilde{\Sigma}$ is easier to estimate than Σ .

Example: $X_i \sim \mathcal{N}_2(\mathbf{0}, \mathbf{\Sigma})$, where $\sigma_1^2 = 1$, $\sigma_2^2 = 2$ and $\rho = 0.56$.



Simplified Method (left), optimal subsampling design (middle), IBOSS (right).

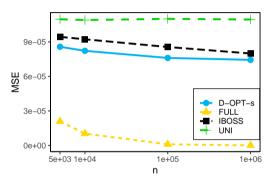
Example: $\boldsymbol{X}_i \sim \mathcal{N}_2(\boldsymbol{0}, \boldsymbol{\Sigma})$, where $\sigma_1^2 = 1$, $\sigma_2^2 = 2$ and $\rho = 0.07$.



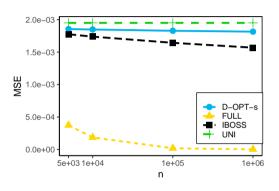
Simplified Method (left), optimal subsampling design (middle), IBOSS (right).

Simulation Study - Simplified Method - Normal Distribution

 $X_i \sim \mathcal{N}_{50}(\mathbf{0}, \mathbf{\Sigma})$ with compound symmetry.



$$ho$$
 = 0.05.



$$\rho$$
 = 0.5.

Discussion & Outlook

Quadratic Regression

- Interior interval may vanish for heavy-tailed distributions.
- Subsampling design with three symmetrically placed intervals of measure $\alpha/3$ is highly efficient w.r.t. the D-optimal subsampling design.

Multiple Linear Regression

- *D*-optimal subsample by transforming data by $\Sigma^{-1/2}(X \mu)$. Then select units with largest euclidean distance.
- Simplified method (only transforming w.r.t. the variances) can be a preferred alternative to IBOSS when correlations are small.

References I

Pronzato, L. and Wang, H. (2021). Sequential online subsampling for thinning experimental designs. *Journal of Statistical Planning and Inference*, 212:169–193.

Sahm, M. and Schwabe, R. (2001).

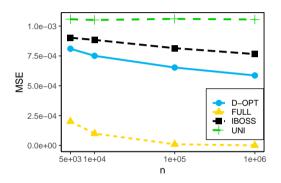
A note on optimal bounded designs.

In Atkinson, A., Bogacka, B., and Zhigljavsky, A., editors, *Optimum Design 2000*, pages 131–140. Kluwer, Dordrecht, The Netherlands.

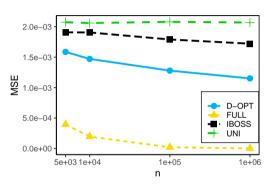
Wang, H., Yang, M., and Stufken, J. (2019). Information-based optimal subdata selection for big data linear regression. *Journal of the American Statistical Association*, 114(525):393–405.

Simulation Study - Normal Distribution

$$\boldsymbol{X}_i \sim \mathcal{N}_{50}(\boldsymbol{0}, \boldsymbol{\Sigma}_{\boldsymbol{X}})$$



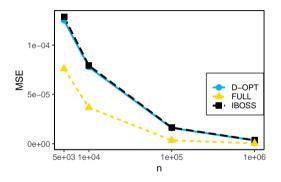
 $\Sigma_X = \mathbb{I}_{50}$ (uncorrelated).



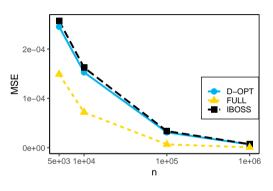
 ρ = 0.5 (compound symmetry).

Simulation Study - t_3 -Distribution

$$X_i \sim t_3(\mathbf{0}, \mathbf{\Sigma}_X)$$



 $\Sigma_X = \mathbb{I}_{50}$ (uncorrelated).



 ρ = 0.5 (compound symmetry).

D-optimal Subsampling Design

Let the covariates X_i be distributed on \mathbb{R}^d with density $f_X(\mathbf{x})$, $\mathsf{E}(X_i) = \mu$ and non-singular covariance matrix Σ , such that the distribution of $\Sigma^{-1/2}(X_i - \mu)$ is rotationally invariant.

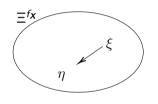
Theorem

Then the density of the D-optimal subsampling design ξ^* is

$$f_{\xi^*}(\mathbf{x}) = f_{\mathbf{X}}(\mathbf{x}) \mathbbm{1}_{(\mathbf{x}-\boldsymbol{\mu})^\top \mathbf{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu}) \geq q_{\alpha}}(\mathbf{x}),$$

where q_{α} is the $(1-\alpha)$ -quantile of $\|\mathbf{\Sigma}^{-1/2}(\mathbf{X}_i - \boldsymbol{\mu})\|_2^2$.

Sensitivity Function



Directional derivative $F_{\Psi}(\xi,\eta)$ from ξ to η

$$F_{\Psi}(\xi,\eta) = \lim_{\epsilon \to 0^+} \frac{1}{\epsilon} \left(\Psi((1-\epsilon)\xi + \epsilon\eta) - \Psi(\xi) \right).$$

Sensitivity function $\psi(x,\xi)$ from ξ to a single point measure at point x

$$\psi(x,\xi) = (q+1) - F_D(\xi,\xi_x) = \alpha \mathbf{f}(x)^{\mathsf{T}} \mathbf{M}(\xi)^{-1} \mathbf{f}(x).$$

