Symmetric Order of Addition Experiments

Nicholas Rios, George Mason University

Overview

(1) Introduction
(2) Order of Addition Experiments

- Asymmetric (Existing Work)
- Symmetric
(3) Methods
(4) Application
(5) Conclusion

Motivating Example

- "Typical" delivery problem
- One truck makes many stops
- What is the shortest route? (Travelling Salesman Problem)

Motivating Example

New technology - delivery drones.

Motivating Example

- New approach: separate delivery points into m clusters
- Have trucks stop at the center of each cluster
- Send drones to all delivery points in the cluster, wait for them to return.

Motivating Example

- Truck and Drone Delivery problem
- One truck makes m stops (one per cluster)
- At each stop, they deploy drones to each delivery point in the cluster.
- What is the optimal route for the truck?

The Plan (High Level)

(1) Identify a design, i.e., a subset of all possible routes, and retrieve the cost for each route in the design.
(2) Fit a model to the data.
(3) Use the model's parameter estimates to (greedily) search for the route with the lowest cost.

Challenges

- If m is large, then m ! is too large to examine all possible orders.
- e.g. if $m=10$ then $10!=3628800$. We can use symmetry to cut this in half, but it is still too large to examine.
- Existing Order-of-Addition models (and designs) inherently assume asymmetry, but this problem has underlying symmetric cost.

Overview

(1) Introduction
(2) Order of Addition Experiments

- Asymmetric (Existing Work)
- Symmetric
(3) Methods
(4) Application
(5) Conclusion

Order of Addition (OofA) Experiments

- We have m components and a response y
- Question: if we change the order of the m components, will this affect the response?
- A treatment is a permutation of $(1,2, \ldots, m)$.
- There are m ! treatments.
- We want to find the order of the m components that gives the optimal (maximum or minimum) response y^{*}.

Pairwise Ordering (PWO) Model

Table: OofA Design for $m=3$, all possible orders

Order	z_{12}	z_{13}	z_{23}
$(1,2,3)$	1	1	1
$(1,3,2)$	1	1	-1
$(3,1,2)$	1	-1	-1
$(3,2,1)$	-1	-1	-1
$(2,3,1)$	-1	-1	1
$(2,1,3)$	-1	1	1

- Van Nostrand (1995) introduced a model based on pairwise order (PWO).
- PWO Model:

$$
y=\beta_{0}+\sum_{j k} z_{j k} \beta_{j k}+\epsilon
$$

- Some combinations of PWO factors are impossible (e.g. $\left.z_{12}=1, z_{13}=-1, z_{23}=1\right)$.

Component Poisition (CP) Model

- An alternative to the PWO coding scheme is the Component-Position (CP) model (Yang et al., 2021).

$$
y(\mathbf{a})=\mu_{0}+\sum_{c=1}^{m} \sum_{j=1}^{m} \delta_{c}^{(j)} x_{c}^{(j)}(\mathbf{a})+\epsilon
$$

for any order a of components.

- $x_{c}^{(j)}(\mathbf{a})=1$ if component c is in position j, and 0 otherwise.
- $\delta_{c}^{(j)}$ is the effect of placing component c in position j on the expected response

Component Position (CP) Model

Table: CP Design for $m=3$, all possible orders

Order	$z_{1}^{(1)}$	$z_{1}^{(2)}$	$z_{1}^{(3)}$	$z_{2}^{(1)}$	$z_{2}^{(2)}$	$z_{2}^{(1)}$	$z_{3}^{(1)}$	$z_{3}^{(2)}$	$z_{3}^{(3)}$
$(1,2,3)$	1	0	0	0	1	0	0	0	1
$(1,3,2)$	1	0	0	0	0	1	0	1	0
$(3,1,2)$	0	1	0	0	0	1	1	0	0
$(3,2,1)$	0	0	1	0	1	0	1	0	0
$(2,3,1)$	0	0	1	1	0	0	0	1	0
$(2,1,3)$	0	1	0	1	0	0	0	1	0

Overview

(1) Introduction

(2) Order of Addition Experiments

- Asymmetric (Existing Work)
- Symmetric

(3) Methods

(4) Application
(5) Conclusion

A Definition of Symmetry

- Let $\mathbf{a}=\left(a_{1}, \ldots, a_{m}\right)$ be a permutation of $(1,2, \ldots, m)$.
- Let $\operatorname{rev}(\mathbf{a})=\left(a_{m}, \ldots, a_{1}\right)$ be the reversal of \mathbf{a}.
- Let $\tau(\mathbf{a})$ be the expected response given \mathbf{a}.
- We say that the order of addition problem is symmetric if $\tau(\mathbf{a})=\tau(\operatorname{rev}(\mathbf{a}))$ for all possible permutations \mathbf{a}
- Symmetric means reversing the order shouldn't change the expected outcome.

Graphical Representation - Symmetric Case

- Symmetry means we can use an undirected graph to represent the problem.
- Any permutation is a Hamiltonian path.

Problem Statement

- Let \mathcal{A}^{*} be the set of all of $\frac{m!}{2}$ permutations that are distinct under reversals.
- Let \mathcal{D} be the set of all possible subsets of \mathcal{A}^{*}. We want an optimal design D^{*}, i.e.

$$
D^{*}=\underset{D \in \mathcal{D}}{\arg \max } \phi(D)
$$

for some (model-based) optimality criterion ϕ. (e.g. D-optimal)

- We wish to identify an optimal Hamiltonian path $\mathbf{a} \in \mathcal{A}^{*}$, i.e.

$$
\mathbf{a}^{*}=\underset{\mathbf{a} \in \mathcal{A}^{*}}{\arg \min } \tau(\mathbf{a})
$$

where $\tau(\mathbf{a})$ is the expected response for a permutation \mathbf{a}.

Overview

(1) Introduction

(2) Order of Addition Experiments

- Asymmetric (Existing Work)
- Symmetric
(3) Methods

(4) Application

(5) Conclusion

Symmetric OofA Model

- Let

$$
x_{j k}(\mathbf{a})= \begin{cases}1 & \text { if }(j, k) \in \mathbf{a} \\ 0 & \text { otherwise }\end{cases}
$$

Table: Symmetric OofA Coding for $m=3$

Order	x_{12}	x_{13}	x_{23}
$(1,2,3)$	1	0	1
$(1,3,2)$	0	1	1
$(3,1,2)$	1	1	0

- Model:

$$
y=\beta_{0}+\sum_{j k} x_{j k}(\mathbf{a}) \beta_{j k}+\epsilon
$$

- For identifiability purposes, we constrain $\beta_{12}=\beta_{23}=\cdots=$ $\beta_{(m-1) m}=0$.
- Moment Matrix $M=\frac{1}{n} X^{T} X$, where X is the model matrix expansion of the design

Full Design is Optimal

Corollary

Under the proposed model, the full design (with all $m!/ 2$ runs included exactly once) is ϕ-optimal for any ϕ that is concave and permutation invariant.

- Follows from Lin and Peng (2019), which proves a similar result for the asymmetric case.
- Requires permutation invariance (instead of signed permutation invariance).
- This allows us to compare all designs to the full design.

Moment Matrix of Full Design

Lemma 1: Moment Matrix

Under the proposed model, the full design has moment matrix

$$
M_{f}=\frac{2}{m!}\left[\begin{array}{cc}
m!/ 2 & (m-1)!1^{T} \\
(m-1)!1 & (m-1)!1_{\binom{m}{2}}+(m-2)!Q
\end{array}\right]
$$

where $I_{\binom{m}{2}}$ is an identity matrix of dimension $\binom{m}{2}, 1$ is a $\binom{m}{2} \times 1$ column of ones, and Q is a matrix with columns and rows indexed by the pairs $(12,13,14, \ldots,(m-1) m)$ in lexicographically increasing order and elements

$$
Q(i j, k \ell)= \begin{cases}0 & \text { if }(i, j)=(k, \ell) \\ 2 & \text { if } i \neq k, \ell \text { and } j \neq k, \ell \\ 1 & \text { otherwise }\end{cases}
$$

D-efficiency of Full Design

- From Lemma 1, we can show that the D-efficiency of the full design is

$$
\left[\left(1+\frac{m-2}{m}\right)\left(\frac{2}{m}\right)^{\frac{(m-1)(m-2)}{2}-1}\left(\frac{2}{m(m-1)}\right)^{m-1}\right]^{\frac{1}{p}}
$$

- This allows us to quickly find the D-efficiency of the full design for any m, which is useful when relative efficiencies need to be calculated.
- Can also derive formula for A-efficiency.

Recursive Algorithm to Generate ϕ-Optimal Designs

Algorithm 1: Recursively Generate Optimal Fractional Design
Inputs: Optimal fractional design for $m-1$ components D_{m-1}.
for $b=1,2, \ldots, m$ do
Let B_{b} be the matrix that results from inserting a column of m 's after the $(m-b)^{t h}$ column of D_{m-1}.
end
$D=\left[B_{1}^{T}, B_{2}^{T}, \ldots, B_{m}^{T}\right]^{T}$
return D

Fractional Designs are ϕ-Optimal

Theorem 1

Suppose D is a design matrix generated by Algorithm 1. Then, D is ϕ-optimal for any ϕ that is concave and permutation invariant.

- Applies to $D-, A$ - and many other popular optimality criteria.
- It is easy to use computer search to find optimal designs for small m (e.g. $m=4,5$ and then use recursion to find optimal designs for larger m.

Algorithm - Find Optimal Paths

(1) Let G^{*} be an empty graph on m vertices.
(2) For all significant $\hat{\beta}_{j k}<0$, add (j, k) to G^{*}.
(3) If G^{*} contains no Hamiltonian paths, add baseline edges $(1,2),(2,3), \ldots,(m-1, m)$ to G^{*}.
(9) Return the set of all Hamiltonian paths in G^{*}.

Toy Example - Finding Optimal Paths

- Example with $m=6$ cities
- Minimal cost order (including return cost) is

$$
\mathbf{a}=(5,2,1,4,3,6) .
$$

- Significant negative edges are $(2,5),(1,4),(3,6)$

Toy Example - Finding Optimal Paths

- Added baseline edges $(1,2),(2,3),(3,4),(4,5),(5,6)$ to G^{*}
- Six possible Hamiltonian paths on G^{*}
- The optimal path is captured.

Overview

(1) Introduction

(2) Order of Addition Experiments

- Asymmetric (Existing Work)
- Symmetric
(3) Methods
(4) Application
(5) Conclusion

Motivating Example

- 52 delivery locations in Berlin in 6 clusters
- $m=7$ components: Depot (origin point) +6 stops
- Used recursive algorithm to create optimal design based on a design for $m=4$ components
- The optimal solution is $(1,3,2,5,7,4,6)$, i.e. start at depot (7), go to $4,6,1,3,2$, 5, return.

Motivating Example

Parameter	Estimate	Std. Error	T	P-value
β_{0}	8959.74	24.48	365.97	0.00
β_{13}	-37.77	16.01	-2.36	0.02
β_{14}	-168.79	15.06	-11.21	0.00
β_{15}	51.64	15.47	3.34	0.00
β_{16}	-659.77	15.30	-43.12	0.00
β_{17}	-81.21	16.19	-5.02	0.00
β_{24}	46.25	15.07	3.07	0.00
β_{25}	-325.23	14.40	-22.59	0.00
β_{26}	77.39	14.70	5.26	0.00
β_{27}	0.14	15.30	0.01	0.99
β_{35}	3.61	15.09	0.24	0.81
β_{36}	217.72	14.40	15.12	0.00
β_{37}	78.53	15.47	5.08	0.00
β_{46}	-37.06	15.07	-2.46	0.01
β_{47}	-133.01	15.06	-8.83	0.00
β_{57}	-77.54	16.01	-4.84	0.00

Table: Parameter Estimates

Motivating Example

- Two possible optimal solutions: $(2,5,7,4,6,1,3)$ and (3, 1, $6,4,7,5,2)$
- Both are rotations of the optimal path

Overview

(1) Introduction

(2) Order of Addition Experiments

- Asymmetric (Existing Work)
- Symmetric

(3) Methods

4. Application

(5) Conclusion

Conclusion

- First attempt to create designs and models for the Order-of-Addition problem where the costs are symmetric
- New model for representing the effect of order via edges in the adjacency matrix of an undirected graph
- Systematic recursive method for finding ϕ-optimal fractions of the full design

Future Work

- Interactions between edges in a graph
- Cheaper designs that are highly efficient, but not exactly optimal might be found using stochastic search algorithms, e.g. Threshold Accepting (Winker et al., 2020)
- What if G is not a complete graph?

References I

Agatz, N., P. Bouman, and M. Schmidt (2018). Optimization approaches for the traveling salesman problem with drone. Transportation Science 52(4), 965-981.
Aidoo, R. P., E. O. Afoakwa, and K. Dewettinck (2014). Optimization of inulin and polydextrose mixtures as sucrose replacers during sugar-free chocolate manufacture-rheological, microstructure and physical quality characteristics. Journal of Food Engineering 126, 35-42.
Chandrasekaran, S. M., S. Bhartiya, and P. P. Wangikar (2006). Substrate specificity of lipases in alkoxycarbonylation reaction: Qsar model development and experimental validation. Biotechnology and Bioengineering 94(3), 554-564.
Chang, Y. S. and H. J. Lee (2018). Optimal delivery routing with wider drone-delivery areas along a shorter truck-route. Expert Systems with Applications 104, 307-317.
Chen, J., R. Mukerjee, and D. K. J. Lin (2020a). Construction of optimal fractional order-of-addition designs via block designs. Statistics \& Probability Letters 161, 108728.
Chen, J. B., R. Mukerjee, and D. K. J. Lin (2020b). Construction of optimal fractional order-of-addition designs via block designs. Statistics \& Probability Letters.
Ding, X., K. Matsuo, L. Xu, J. Yang, and L. Zheng (2015). Optimized combinations of bortezomib, camptothecin, and doxorubicin show increased efficacy and reduced toxicity in treating oral cancer. Anti-Cancer Drugs 26(5), 547-554.
Freitas, J. C., P. H. V. Penna, and T. A. Toffolo (2022). Exact and heuristic approaches to truck-drone delivery problems. EURO Journal on Transportation and Logistics, 100094.
García-Ródenas, R., J. C. García-García, J. López-Fidalgo, J. Á. Martín-Baos, and W. K. Wong (2020). A comparison of general-purpose optimization algorithms for finding optimal approximate experimental designs. Computational Statistics \& Data Analysis 144, 106844.
Lin, D. K. J. and J. Peng (2019). Order-of-addition experiments: A review and some new thoughts (with discussion). Quality Engineering 31(1), 49-59.
Mee, R. W. (2020). Order-of-addition modeling. Statistica Sinica 30(3), 1543-1559.
Peng, J., R. Mukerjee, and D. K. J. Lin (2019). Design of order-of-addition experiments. Biometrika 106(3), 683-694.
Rajaonarivony, M., C. Vauthier, G. Couarraze, F. Puisieux, and P. Couvreur (1993). Development of a new drug carrier made from alginate. Journal of pharmaceutical sciences 82(9), 912-917.

References II

Rios, N. and D. K. J. Lin (2021). Order-of-addition mixture experiments. Journal of Quality Technology. Submitted for Publication.
Rios, N., P. Winker, and D. K. Lin (2022). Ta algorithms for d-optimal oofa mixture designs. Computational Statistics \& Data Analysis 168, 107411.
Sljivic-Ivanovic, M. Z., I. D. Smiciklas, S. D. Dimovic, M. D. Jovic, and B. P. Dojcinovic (2015). Study of simultaneous radionuclide sorption by mixture design methodology. Industrial \& Engineering Chemistry Research 54(44), 11212-11221.
Van Nostrand, R. (1995). Design of experiments where the order of addition is important. In ASA proceedings of the Section on Physical and Engineering Sciences, pp. 155-160. American Statistical Association Alexandria, VA.
Voelkel, J. G. (2019). The design of order-of-addition experiments. Journal of Quality Technology 51(3), 230-241.
Voelkel, J. G. and K. P. Gallagher (2019). The design and analysis of order-of-addition experiments: An introduction and case study. Quality Engineering 31(4), 627-638.
Wang, A., H. Xu, and X. Ding (2020). Simultaneous optimization of drug combination dose-ratio sequence with innovative design and active learning. Advanced Therapeutics 3(4), 1900135.
Winker, P., J. Chen, and D. K. J. Lin (2020). The construction of optimal design for order-of-addition experiment via threshold accepting. In Contemporary Experimental Design, Multivariate Analysis and Data Mining, Chapter 6, pp. 93-109. Springer.
Yang, J.-F., F. Sun, and H. Xu (2021). A component-position model, analysis and design for order-of-addition experiments. Technometrics 63(2), 212-224.
Zhao, Y., D. K. Lin, and M.-Q. Liu (2022). Optimal designs for order-of-addition experiments. Computational Statistics \& Data Analysis 165, 107320.
Zhao, Y. L., D. K. J. Lin, and M. Liu (2020). Design for order of addition experiment. Journal of Applied Statistics forthcoming.

