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Introduction
Aim: solve a multi-objective optimization problem that
consists in the maximization of a minimum design-efficiency
Different approaches can be classified as maxi-min efficiency
criteria (e.g. the standardized max-min criterion)
Reversely, examples of maxi-min efficiency criteria that can be
interpreted as multi-objective problems (e.g. SMV-criterion,
or the extensions of T- and KL-criteria). Another might be
obtaining an optimal design for model identification, precise
parameter estimation and accurate predictions.
The maxi-min approach arises naturally when protecting
against the worst case scenario; however optimal designs are
difficult to compute because this criterion is not differentiable
Main contribution: prove the equivalence between maxi-min
efficiency and Bayesian criterion for a specific prior, which is
differentiable. Hence, the latter can be used to check for the
minimum efficiency optimality
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Optimal Design of Experiments

f(y, x, θ) model, Y response, x ∈ X , θ ∈ Θ ⊆ IRp parameter
vector
Approximate design: probability measure on X with finite
support,

ξ =
{

x1 x2 · · · xr

ξ(x1) ξ(x2) · · · ξ(xr)

}
,

where ξ(xi) ≈ ni/n,

Aim: find a design ξ∗
θ maximizing (minimizing) a concave

(convex) optimality criterion function Φ(ξ; θ)
An optimal design ξ∗

θ may be found according to several
criteria reflecting different inferential goals: parameter
estimation, prediction or model discrimination.
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Optimal Design of Experiments

Many optimality criteria are concave (or convex) functions of
the information matrix of a design ξ ∈ Ξ,

M(ξ, θ) =
∫

X
EY

{
∂ log f(y, x, θ)

∂θ

∂ log f(y, x, θ)
∂θT

}
dξ(x).

For Φ(ξ; θ) is a non-negative homogeneous concave function,
the efficiency function

0 ≤ Eff(ξ, θ) = Φ(ξ, θ)
Φ(ξ∗

θ , θ)
≤ 1.

is a measure of the goodness of the design ξ with respect to
the optimal design ξ∗

θ (the ratio should be reversed for convex
criteria).
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Pseudo Bayesian-criteria
Φi(ξ), i = 1, . . . , k concave optimality criteria
Standardized criteria (Dette, 1997): Effi(ξ) = Φi(ξ)/Φi(ξ∗

i ),
i = 1, . . . , k
When interested in a compromise design ’good’ for all the
criteria, we have to combine them. An easy way is through a
linear combination. A Bayesian optimum design maximizes

ΦB(ξ;π)=
k∑

i=1
πi · Effi(ξ), 0 ≤ πi ≤ 1,

k∑
i=1

πi = 1,

where πT = (π1, . . . , πk) is a prior probability on the set
{1, . . . , k}
A design ξ∗

π is Bayesian optimal if and only if

k∑
i=1

πi
∂Φi(ξ∗

π, ξx)
Φi(ξ∗

i ) ≤ 0, x ∈ X ,
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Maximin efficiency

Another possibility is the minimum efficiency criterion

Φ(ξ) = min
i∈{1,...,k}

Effi(ξ) =
[

max
i∈{1,...,k}

1
Effi(ξ)

]−1
.

This criterion is not differentiable, and thus the computation
of Φ-optimal designs is not straightforward at all
A design ξ∗ is a maxi-min efficient if minimizes the convex
criterion

Φ−1(ξ) = max
i∈{1,...,k}

1
Effi(ξ)

.

Connection between both already explored in literature, but
always center on specific problems and/or optimality criteria.
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Analytical results

Proposition

The directional derivative of Φ−1(ξ) at ξ in the direction of ξ̄− ξ is

∂Φ−1(ξ; ξ̄) = max
ei∈C(ξ)

∫
X
ψ(x, ei, ξ)ξ̄(dx),

where ei denotes the canonical vector of the Euclidean space,

C(ξ) =
{
ei : i = arg max

j∈{1,...k}

1
Effj(ξ)

}
=

{
ei : i = arg min

j∈{1,...k}
Effj(ξ)

}
,

and ψ(x, ei, ξ) = −Φi(ξ∗
i ) ∂Φi(ξ, ξx)

Φ2
i (ξ)

.
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Equivalence theorem

Theorem (Equivalence Theorem)

A design ξ∗ is a maxi-min efficiency design if and only if there
exists a probability distribution π∗ on the index set

I(ξ∗) =
{
i : i = arg min

j∈{1,...,k}
Effj(ξ∗)

}
,

such that ξ∗ is a Bayesian optimum design for the prior distribution
π∗, that is, if and only if ξ∗ fulfils the following inequality,

∑
i∈I(ξ∗)

π∗
i

∂Φi(ξ∗, ξx)
Φi(ξ∗

i ) ≤ 0, x ∈ X .

Furthermore, the quantity
∑

i∈I(ξ∗) π
∗
i

∂Φi(ξ∗,ξx)
Φi(ξ∗

i ) attains its
maximum value of zero at every support point of ξ∗.
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Sketch of the proof

ξ∗ is maximin optimum design iff ∂Φ−1(ξ∗, ξ) ≥ 0,∀ξ, that is
minξ maxei∈C(ξ∗)

∫
X ψ(x, ei, ξ

∗)ξ(dx) ≥ 0

minξ maxη
∫

X
∫

C(ξ∗) ψ(x, ei, ξ
∗) η(dei) ξ(dx) ≥ 0 (η in C(ξ∗))

maxη minx
∫

C(ξ∗) ψ(x, ei, ξ
∗) η(dei) ≥ 0

Thus, there exists a measure η in C(ξ∗) satisfying
minx

∫
C(ξ∗) ψ(x, ei, ξ

∗) η(dei) ≥ 0
That is,

∫
C(ξ∗) ψ(x, ei, ξ

∗) η(dei) ≥ 0, x ∈ X (NoMaxMin)
Using Proposition and some algebra it can be expressed as

∑
i∈I(ξ∗)

π∗
i

∂Φi(ξ∗, ξx)
Φi(ξ∗

i ) ≤ 0, x ∈ X .

which is the condition of Bayesian optimality
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Example 1: Max-min OD for model discrimination
Discriminating designs in toxicology studies (Dette et al., 2010)

Rival models
η1(x, θ) = ae−bx; θ=(a, b)T, a > 0, b > 0,
η2(x, θ) = ae−bxd

; θ=(a, b, d)T, a > 0, b > 0, d ≥ 1,
η3(x, θ) = a

[
c− (c− 1)e−bx

]
; θ=(a, b, c)T, a > 0, b > 0, c∈ [0, 1],

η4(x, θ) = a
[
c− (c− 1)e−bxd

]
; θ=(a, b, c, d)T, a > 0, b > 0, c∈ [0, 1], d ≥ 1,

Criterion for discriminating between pairs of models:

min
i∈{1,2,3,4}

Effi(ξ) = min
{

Eff2−1(ξ),Eff3−1(ξ),Eff4−2(ξ),Eff4−3(ξ)
}
,

(comparisons 1 to 4 respectively)
For an initial value θ0, Effi(ξ) = minξ eT

i M−
i (ξ,θ0)ei

eT
i M−1

i (ξ,θ0)ei
, with

ei =


e3 ∈ IR3 for i = 1, 2
e3 ∈ IR4 for i = 3
e4 ∈ IR4 for i = 4

; Mi(ξ, θ0) =

M2(ξ, θ0) for i = 1
M3(ξ, θ0) for i = 2
M4(ξ, θ0) for i = 3, 4
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Example 1: Max-min OD for model discrimination
Max-min optimal discriminating designs in toxicology studies (Dette et al., 2010)

The authors use a numerical Nedler-Mead based algorithm.
For θ0 = (1, 3, 0, 1)T find the solution

ξ∗
s =

{
0 .105 .44 1
.141 .233 .199 .427

}
,

Eff1(ξ∗
s ) = .705, Eff2(ξ∗

s ) = Eff4(ξ∗
s ) = .682, Eff3(ξ∗

s ) = .871
Thus C(ξ∗

s ) = {2; 4} and π∗
1 = π∗

3 = 0. Then for the criteria

Φi(ξ) =
{

[eT
i M−

i (ξ, θ0) ei]−1 if ei ∈ Range[Mi(ξ, θ0)]
0 otherwise , i = 1, . . . , 4

it can be found the prior for which ξ∗
s is the corresponding

bayesian optimal design: π∗
2 = .574 and π∗

4 = 1 − π∗
2
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Example 1: Max-min OD for model discrimination
Max-min optimal discriminating designs in toxicology studies (Dette et al., 2010)

Checking condition
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Figure: Sensitivity function
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Example 2: ODE for parameter estimation
SMV-optimum designs (Dette, 1997) in biology immunoassays

The four-parameter logistic model is the most frequently used
model for symmetric immunoassay data
y = θ1 + θ2−θ1

1+ (x/θ4)θ3
+ ε, x ∈ X = [0,∞),

where y is the response at the concentration x, ε ∼ N(0;σ2)
and θ1 > 0, θ2 > 0, θ3 ∈ IR, θ4 > 0 are unknown parameters
SMV-optimality criterion
ΦSMV (ξ) = maxi∈{1,...,4}

eT
i M−1(ξ,θ0) ei

eT
i M−(ξ∗

i ,θ0) ei

It is an example of maximum inefficiency criterion for

Φi(ξ) =
{

[eT
i M

−(ξ, θ0) ei]−1 if ei ∈ Range[M(ξ, θ0)]
0 otherwise , i = 1, . . . , 4

Here X = [0, 5], θ0 = (1, 2, 1, 1) and the gradient is
∂ log f(y,x,θ)

∂θ =
(
1 − 1

1+x ,
1

1+x ,−
x log [x+10−6]

(1+x)2 , x
(1+x)2

)T
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Example 2: ODE for parameter estimation
SMV-optimum designs (Dette, 1997) in biology immunoassays

Searching for the optimal design
For every combination of two indexes (i, j), the designs
having the same efficency for those criteria are not
maximin/bayesian optimal (different reasons)
The same for every combination of three indexes but (2, 3, 4).
For this combination the design

ξ∗ =
{

0 0.126 1.279 5
0.497 0.114 0.241 0.148

}
,

has efficiencies {0.5963, 0.4970, 0.4970, 0.4970}
Using the condition of the equivalence theorem for the support
points, we get the solution π∗ = {0, 0.493, 0.054, 0.453} with
a minimum value of 6.644 x 10−4 ≈ 0
Thus ξ∗ is Bayesian optimal for π∗, and therefore is maximin
efficient as well
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Conclusions
Tommasi, C., Rodríguez-Díaz J.M., López-Fidalgo J.

Maxi-min efficiency criteria take into consideration several
tasks expressed by different component-wise criteria Φi

ξ∗ = arg maxξ mini∈{1,...,k} Effi(ξ)
But they are difficult to manage because of their lack of diff.
Bayesian optimality is differentiable

ξ∗ = arg maxξ
∑k

i=1 πi · Effi(ξ), with π = {πi}i prior
A general version of the equivalence theorem, covering any
multi-objective problem that can be expressed as a minimum
design efficiency (for any component-wise criteria) has been
proved.
Future work: design an efficienta method to determine the
prior probability that matches the maxi-min efficiency criterion
and the Bayesian optimality, allowing the application of the
equivalence theorem.
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Any question?
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