Order-of-Addition Experiments
to study the effect of treatment ordering
Eric Schoen, KU Leuven, Belgium

Joint research with

Robert W. Mee
University of Tennessee
Knoxville TN USA

Contents

Order-of-addition experiments investigate the effect of the order in which a set of treatments is applied

1. A motivating example
2. Models for the effect of treatment ordering
3. D-optimality of designs with all treatment orders once
4. Order-of-addition orthogonal arrays
5. Enumeration results
6. Conclusion

Experiment of Voelkel and Gallagher (2019)

Component	Abbreviation
Primary binding resin	R1
Secondary binder resin	R2
Flow and leveling additive	A1
Rheology modifier \#1	M1
Crosslinking resin	X
Rheology modifier \#2	M2

- 6 components of an automotive coating system
- In what order should they be added so that the coating is smooth and even?

An experimental design in 24 runs

Run	Order of addition						Run	Order of addition					
1	R1	R2	M2	A1	M1	X	13	R2	M2	R1	M1	A1	X
2	M1	R1	M2	R2	X	A1	14	R2	M1	R1	A1	X	M2
3	X	M1	M2	R1	R2	A1	15	R2	X	A1	M2	R1	M1
4	M2	R1	X	A1	R2	M1	16	R2	M1	X	M2	A1	R1
5	X	R1	M2	A1	M1	R2	17	M2	X	R2	M1	A1	R1
6	R1	M1	A1	M2	R2	X	18	M1	R2	M2	A1	X	R1
7	R1	X	M2	M1	A1	R2	19	X	M1	R2	A1	R1	M2
8	M1	X	R1	A1	R2	M2	20	A1	R2	M2	X	M1	R1
9	A1	R1	X	R2	M1	M2	21	M2	A1	R2	X	M1	R1
10	A1	X	R1	M2	R2	M1	22	A1	M1	R2	R1	X	M2
11	A1	M2	M1	R1	X	R2	23	A1	M1	X	M2	R2	R1
12	X	R2	R1	A1	M1	M2	24	M1	M2	X	A1	R2	R1

Key feature of a design

- m components
- m! possible permutations
- A design is a subset of these permutations.

A toy example

Run	Sequence
1	123
2	132
3	312
4	213
5	231
6	321

- Three components
- $3!=6$ possible sequences

Pairwise order model

Run	Sequence	O_{12}	O_{13}	O_{23}	\bullet Three components
1	123	1	1	1	$\bullet 3!=6$ possible sequences
2	132	1	1	-1	
3	312	1	-1	-1	$\bullet \mathrm{O}_{\mathrm{ij}}=1$ if i comes before j
4	213	-1	1	1	$\bullet \mathrm{O}_{\mathrm{ij}}=-1$ if i comes after j
5	231	-1	-1	1	
6	321	-1	-1	-1	

$$
y=\beta_{0}+\sum_{i<j} \beta_{i j} O_{i j}+\varepsilon
$$

Linear component position model

| Run | Sequence | $p\left(b_{1}\right)$ | $p\left(b_{2}\right)$ | $p\left(b_{3}\right)$ | \bullet Three components |
| :--- | :--- | ---: | ---: | ---: | :--- | :--- |
| 1 | 123 | -1 | 0 | 1 | $\bullet 3!=6$ possible sequences |
| 2 | 132 | -1 | 1 | 0 | |
| 3 | 312 | 0 | 1 | -1 | |
| 4 | 213 | 0 | -1 | 1 | $\bullet p\left(b_{i}\right):$ position for component i |
| 5 | 231 | 1 | -1 | 0 | |
| 6 | 321 | 1 | 0 | -1 | |

Linear component position model

Run	Sequence	$p_{1}\left(b_{1}\right)$	$p_{1}\left(b_{2}\right)$	$p_{1}\left(b_{3}\right)$
1	123	$-\sqrt{3 / 2}$	0	$\sqrt{3 / 2}$
2	132	$-\sqrt{3 / 2}$	$\sqrt{3 / 2}$	0
3	312	0	$\sqrt{3 / 2}$	$-\sqrt{3 / 2}$
4	213	0	$-\sqrt{3 / 2}$	$\sqrt{3 / 2}$
5	231	$\sqrt{3 / 2}$	$-\sqrt{3 / 2}$	0
6	321	$\sqrt{3 / 2}$	0	$-\sqrt{3 / 2}$

- Three components
- $3!=6$ possible sequences
- $p_{1}\left(b_{i}\right)$ linear position factor for component i
- rows add up to 0
- Main-effects model

$$
y=\gamma_{0}+\sum_{i=1}^{m-1} \gamma_{i} p_{1}\left(b_{i}\right)+\varepsilon
$$

Uniform design: optimality for PWO model

- m treatments, components,...
- m! orders
- the uniform design has all orders exactly once

Peng et al. (2019): uniform design is optimal for the maineffects PWO model according to many criteria, including D.

- main-effects PWO model matrix

$$
X_{f}=\left[\mathbf{1}_{\mathrm{m}!} O_{f}\right]
$$

- $M_{f}=X_{f}^{T} X_{f} / m$!
- Any design with N runs and

$$
X^{T} X / N=X_{f}^{T} X_{f} / m!
$$

is D -optimal for the maineffects PWO model

Uniform design: optimality for CP model

- m treatments, components,...
- m ! orders
- the uniform design has all orders exactly once

Stokes and Xu (2022): uniform design is D-optimal for the linear CP model.

- linear position model matrix
$L_{f}=\left[\mathbf{1}_{\mathrm{m}!} P_{f}\right]$
- $K_{f}=L_{f}^{T} L_{f} / m$!
- Any design with N runs and
$L^{T} L / N=L_{f}^{T} L_{f} / m$!
is D-optimal for the linear CP model

Optimality for PWO and linear CP model

- Peng et al. (2019): Any design with $X^{T} X / N=X_{f}^{T} X_{f} / m$! is D-optimal for the main-effects PWO model

Stokes and Xu (2022): any design with $L^{T} L / N=L_{f}^{T} L_{f} / m$! is D-optimal for the linear CP model

Schoen and Mee: any design with $X^{T} X / N=X_{f}^{T} X_{f} / m$! is D-optimal for the linear CP model

An honorific name

- Any design with

$$
\left(X^{T} X\right) / N=X_{f}^{T} X_{f} / m!
$$

is called an order-of-addition orthogonal array (OA)....
...but such a design is not orthogonal for the PWO main effects

- Here is the normalized information matrix for the full 4! design:

$$
\frac{1}{3}\left(\begin{array}{rrrrrrr}
3 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 3 & 1 & 1 & -1 & -1 & 0 \\
0 & 1 & 3 & 1 & 1 & 0 & -1 \\
0 & 1 & 1 & 3 & 0 & 1 & 1 \\
0 & -1 & 1 & 0 & 3 & 1 & -1 \\
0 & -1 & 0 & 1 & 1 & 3 & 1 \\
0 & 0 & -1 & 1 & -1 & 1 & 3
\end{array}\right)
$$

What run sizes are feasible for OAs?

- Run size N for 4 or more components must be a multiple of 2 ...
- and of 3 ...
- and of 4.
- So N is multiple of 12

A challenge

- Run size N for 4 or more components must be a multiple of 12 .
- Can we enumerate OAs?
- Yes we can! We wrote an algorithm to enumerate all nonisomorphic Oas of given N and m .

Enumeration results

Run size N	Number of components m	Number of designs d	Complete enumeration of 12- 12$\quad 4$
	2	2	run OAs
	2	2	

Enumeration results

Run size N	Number of components m	Number of designs d	- Complete enumeration of 12run and 24-run OAs
12	4	2	
	5	2	
24	4	10	
	5	8,642	
	6	22,651	
	7	2,906	

Enumeration results

Run size N	Number of components m	Number of designs d
12	4	2
24	5	2
	4	10
	5	8,642
36	6	22,651
	7	2,906
	4	30
	5	$>83,891,097$
	6	$>309,655,722$
	7	>74

- Complete enumeration of 12run and 24-run OAs
- Partial enumeration of 36 -run OAs
- Can be characterized by additional criteria

D-efficiencies 7 component OAs

- Quadratic CP: D-efficiency for quadratic position model
- 4-component PWO: average D-eff for interaction model over all projections
 into 4 components

Concluding remarks

- The order in which treatments are applied can be modeled with pairwise order factors or component position factors
- It is possible to enumerate optimal designs for the model with main effects of the PWO factors
- Designs can be characterized further based on their efficiencies for more complex models
- Challenge: direct construction of efficient designs for realistic run sizes.

References

- Peng, J., Mukerjee, R., and Lin, D. K. J. (2019) Design of order-ofaddition experiments. Biometrika 106: 683-694.
- Schoen, E. D. and Mee, R. W. (2023) Order-of-addition orthogonal arrays to study the effect of treatment ordering. Under review.
- Stokes, Z. and Xu, H. (2022) A position-based approach for design and analysis of order-of-addition experiments. Statistica Sinica 32: 14671488.
- Voelkel, J. G., and Gallagher, K. P. (2019) The design and analysis of order-of-addition experiments: An introduction and case study. Quality Engineering 31: 627-638.

