Order-of-Addition Experiments

to study the effect of treatment ordering

Eric Schoen, KU Leuven, Belgium

Joint research with

Robert W. Mee University of Tennessee Knoxville TN USA

Order-of-addition experiments investigate the effect of the order in which a set of treatments is applied

- 1. A motivating example
- 2. Models for the effect of treatment ordering
- 3. D-optimality of designs with all treatment orders once
- 4. Order-of-addition orthogonal arrays
- 5. Enumeration results
- 6. Conclusion

Experiment of Voelkel and Gallagher (2019)

Component	Abbreviation
Primary binding resin	R1
Secondary binder resin	R2
Flow and leveling additive	A1
Rheology modifier #1	M1
Crosslinking resin	Х
Rheology modifier #2	M2

- 6 components of an automotive coating system
- In what order should they be added so that the coating is smooth and even?

An experimental design in 24 runs

Run	Order of addition					Run		C	order of	addition	า		
1	R1	R2	M2	A1	M1	Х	13	R2	M2	R1	M1	A1	Х
2	M1	R1	M2	R2	Х	A1	14	R2	M1	R1	A1	Х	M2
3	Х	M1	M2	R1	R2	A1	15	R2	Х	A1	M2	R1	M1
4	M2	R1	Х	A1	R2	M1	16	R2	M1	Х	M2	A1	R1
5	Х	R1	M2	A1	M1	R2	17	M2	Х	R2	M1	A1	R1
6	R1	M1	A1	M2	R2	Х	18	M1	R2	M2	A1	Х	R1
7	R1	Х	M2	M1	A1	R2	19	Х	M1	R2	A1	R1	M2
8	M1	Х	R1	A1	R2	M2	20	A1	R2	M2	Х	M1	R1
9	A1	R1	Х	R2	M1	M2	21	M2	A1	R2	Х	M1	R1
10	A1	Х	R1	M2	R2	M1	22	A1	M1	R2	R1	Х	M2
11	A1	M2	M1	R1	Х	R2	23	A1	M1	Х	M2	R2	R1
12	Х	R2	R1	A1	M1	M2	24	M1	M2	Х	A1	R2	R1

Key feature of a design

- m components
- m! possible permutations
- A design is a subset of these permutations.

A toy example

Run	Sequence
1	123
2	132
3	312
4	213
5	231
6	321

- Three components
- 3! = 6 possible sequences

Pairwise order model

Run	Sequence	O ₁₂	O ₁₃	O ₂₃
1	123	1	1	1
2	132	1	1	-1
3	312	1	-1	-1
4	213	-1	1	1
5	231	-1	-1	1
6	321	-1	-1	-1

- Three components
- 3! = 6 possible sequences
- O_{ij} = 1 if i comes before j
 O_{ij} = -1 if i comes after j
- Main-effects model

$$y = \beta_0 + \sum_{i < j} \beta_{ij} O_{ij} + \varepsilon$$

Linear component position model

Run	Sequence	p(b ₁)	p(b ₂)	p(b ₃)
1	123	-1	0	1
2	132	-1	1	0
3	312	0	1	-1
4	213	0	-1	1
5	231	1	-1	0
6	321	1	0	-1

- Three components
- 3! = 6 possible sequences
- p(b_i): position for component i

Linear component position model

Run	Sequence	p ₁ (b ₁)	p ₁ (b ₂)	p ₁ (b ₃)
1	123	$-\sqrt{3/2}$	0	$\sqrt{3/2}$
2	132	$-\sqrt{3/2}$	$\sqrt{3/2}$	0
3	312	0	$\sqrt{3/2}$	$-\sqrt{3/2}$
4	213	0	$-\sqrt{3/2}$	$\sqrt{3/2}$
5	231	$\sqrt{3/2}$	$-\sqrt{3/2}$	0
6	321	$\sqrt{3/2}$	0	$-\sqrt{3/2}$

- Three components
- 3! = 6 possible sequences
- p₁(b_i) linear position factor for component i
- rows add up to 0
- Main-effects model

$$y = \gamma_0 + \sum_{i=1}^{m-1} \gamma_i p_1(b_i) + \varepsilon$$

Uniform design: optimality for PWO model

- m treatments, components,...
- m! orders
- the uniform design has all orders exactly once

Peng et al. (2019): uniform design is optimal for the maineffects PWO model according to many criteria, including D.

- main-effects PWO model matrix $X_f = [\mathbf{1}_{m!} O_f]$ • $M_f = X_f^T X_f / m!$
- Any design with N runs and $X^T X / N = X_f^T X_f / m!$

is D-optimal for the maineffects PWO model

Uniform design: optimality for CP model

- m treatments, components,...
- m! orders
- the uniform design has all orders exactly once

Stokes and Xu (2022): uniform design is D-optimal for the linear CP model.

linear position model matrix

 $L_f = [\mathbf{1}_{\mathsf{m}!} P_f]$ • $K_f = L_f^T L_f / m!$ • Any design with N runs and $L^T L/N = L_f^T L_f/m!$ is D-optimal for the linear CP model

Optimality for PWO and linear CP model

• Peng et al. (2019): Any design with $X^T X/N = X_f^T X_f/m!$ is D-optimal for the main-effects PWO model

Stokes and Xu (2022): any design with $L^T L/N = L_f^T L_f/m!$ is D-optimal for the linear CP model

Schoen and Mee: any design with $X^T X/N = X_f^T X_f/m!$ is D-optimal for the linear CP model

An honorific name

• Any design with

 $(X^T X)/N = X_f^T X_f/m!$

is called an order-of-addition orthogonal array (OA)....

...but such a design is not orthogonal for the PWO main effects Here is the normalized information matrix for the full 4! design:

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} 1\\ \end{array} \\ \begin{array}{c} 3 \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \begin{array}{c} 3 \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \begin{array}{c} 3 \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \begin{array}{c} 0 \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \begin{array}{c} 3 \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} 1 \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array}$$

What run sizes are feasible for OAs?

- Run size *N* for 4 or more components must be a multiple of 2...
- and of 3 ...
- and of 4.
- So N is multiple of 12

A challenge

$$\begin{array}{c} \begin{array}{c} 1\\ \hline \\ 1\\ \hline \\ 3 \end{array} \begin{pmatrix} 3 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 3 & 1 & 1 & -1 & -1 & 0 \\ 0 & 1 & 3 & 1 & 1 & 0 & -1 \\ 0 & 1 & 1 & 3 & 0 & 1 & 1 \\ 0 & -1 & 1 & 0 & 3 & 1 & -1 \\ 0 & -1 & 0 & 1 & 1 & 3 & 1 \\ 0 & 0 & -1 & 1 & -1 & 1 & 3 \end{pmatrix}$$

- Run size *N* for 4 or more components must be a multiple of 12.
- Can we enumerate OAs?
- Yes we can! We wrote an algorithm to enumerate all nonisomorphic Oas of given N and m.

Enumeration results

Run size <i>N</i>	Number of components <i>m</i>	Number of designs <i>d</i>
12	4	2
	5	2

• Complete enumeration of 12run OAs

Enumeration results

Run size <i>N</i>	Number of components <i>m</i>	Number of designs <i>d</i>
12	4	2
	5	2
24	4	10
	5	8,642
	6	22,651
	7	2,906

• Complete enumeration of 12run and 24-run OAs

Enumeration results

Run size <i>N</i>	Number of components <i>m</i>	Number of designs <i>d</i>
12	4	2
	5	2
24	4	10
	5	8,642
	6	22,651
	7	2,906
36	4	30
	5	> 83,891,097
	6	> 309,655,722
	7	> 74

- Complete enumeration of 12run and 24-run OAs
- Partial enumeration of 36-run OAs

• Can be characterized by additional criteria

D-efficiencies 7 component OAs

- Quadratic CP:
 D-efficiency for quadratic position model
- 4-component PWO: average D-eff for interaction model over all projections into 4 components

Concluding remarks

- The order in which treatments are applied can be modeled with pairwise order factors or component position factors
- It is possible to enumerate optimal designs for the model with main effects of the PWO factors
- Designs can be characterized further based on their efficiencies for more complex models
- Challenge: direct construction of efficient designs for realistic run sizes.

References

- Peng, J., Mukerjee, R., and Lin, D. K. J. (2019) Design of order-ofaddition experiments. *Biometrika* **106**: 683-694.
- Schoen, E. D. and Mee, R. W. (2023) Order-of-addition orthogonal arrays to study the effect of treatment ordering. Under review.
- Stokes, Z. and Xu, H. (2022) A position-based approach for design and analysis of order-of-addition experiments. *Statistica Sinica* **32**: 1467-1488.
- Voelkel, J. G., and Gallagher, K. P. (2019) The design and analysis of order-of-addition experiments: An introduction and case study. *Quality Engineering* **31**: 627-638.

