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Motivating Example I
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Motivating Example II

Situation:

Electrial power distribution grids (PDG)
of medium and low-voltage levels.

Cooperating electrical engineers study
the state of these grids.

Different households are connected.

Target:

1 Appropriate statistical modelling of the
random states in these grids.

2 Optimal positioning of measurement
devices of different precision under
budget constraints.
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Motivating Example III

Specific problem:

1 Different types of measurements can be placed at each node.

2 Due to costs, the most precise measurement device cannot be set up
at all nodes.

Pseudo measurements have to be used at some nodes.

3 At which nodes is it sufficient to use pseudo measurements?
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Motivating Example IV

Ideas:

1 Use methods from graph theory for the model formulation.

2 Try to find some analytical solutions for optimal designs.
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Motivating Example IV

Ideas:

1 Use methods from graph theory for the model formulation.

2 Try to find some analytical solutions for optimal designs.
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Observing states of a network in PDG – The star-network

The network consists of I + 1 nodes 0, . . . , I

The unknown expected states are given by: s = (s0, . . . , sI )
>

At a specific node i , i = 0, . . . , I :

Let a be the influence of the state si on the
expected observation,

let b be the influence of the state sj (j 6= i) of
the adjacent nodes on the expected observation.
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Let a be the influence of the state si on the
expected observation,

let b be the influence of the state sj (j 6= i) of
the adjacent nodes on the expected observation.

The expected observations are then:

Y0 = as0 +
I∑

i=1

bsi ,

Yi = asi + bs0 , i = 1, . . . , I .
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(
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b1I aII×I
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Observing states of a network in PDG – General network

Assumptions:

The PDG is well described by an undirected graph.

The known weights of the edges describe the influence of adjacent
nodes’ states on the observation of a particular node.
⇒ These weights are stored in the adjacency matrix A.

The influence of the state of a particular node i on its respective
observation is given by known values ci , i = 0, . . . , I .

The influence matrix of the network:

X = diag(c0, . . . , cI ) + A

⇒ TODAY: X is non-singular.

The expected observations are: Y = Xs
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Leaving the idealistic world

The expected observations are: Y = Xs

We now integrate two types of errors into our model:

1 the expected state vector s is not passing into the model directly, but
with some random error.

2 the observations taken at each node of the network are more or less
noisy (due to the different types of measurements allocated).
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A network model for state estimation I
Simultaneous observations of the complete network at N time points:

Yn = XSn + En , n = 1, . . . ,N

Sn = s + Zn

Yn is the (I + 1)-dimensional vector

X is the known influence matrix of the network

Sn (I + 1)-dimensional random state at time point n
I E[Sn] = s, s ∈ RI+1 unknown parameter
I Z1, . . . ,ZN are i.i.d., E[Zn] = 0, Cov(Zn) = σ2DZ

E1, . . . ,EN are i.i.d., E[En] = 0

Cov(En) = σ2DE ; DE = diag(σ2
0E , . . . , σ

2
IE ),

where σ2
0E , . . . , σ

2
IE indicates the different accuracies with which

observations are measured at node i .
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A network model for state estimation II

Simultaneous observations of the complete network at N time points:

Yn = X(s + Zn) + En , n = 1, . . . ,N

s ∈ RI+1 unknown parameter

Z1, . . . ,ZN are i.i.d., E[Zn] = 0, Cov(Zn) = σ2DZ

E1, . . . ,EN are i.i.d., E[En] = 0

Cov(En) = σ2DE ; DE = diag(σ2
0E , . . . , σ

2
IE ),

where σ2
0E , . . . , σ

2
IE indicates the different accuracies with which

observations are measured at node i .
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A network model for state estimation II
Simultaneous observations of the complete network at N time points:

Yn = X(s + Zn) + En , n = 1, . . . ,N

s ∈ RI+1 unknown parameter
Z1, . . . ,ZN are i.i.d., E[Zn] = 0, Cov(Zn) = σ2DZ

E1, . . . ,EN are i.i.d., E[En] = 0

Cov(En) = σ2DE ; DE = diag(σ2
0E , . . . , σ

2
IE ),

where σ2
0E , . . . , σ

2
IE indicates the different accuracies with which

observations are measured at node i .

Rising Questions:
1 How to estimate the unknown expected state s?
2 Where to allocate the different types of measurements at the node of

the network in order to get a precise estimation of the unknown
expected state s?
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Estimating the state in the network model
The BLUE for Ls in the network model for state estimation:

Lŝ = L ((1N ⊗ S−1/2 X)>(1N ⊗ S−1/2 X))−1 (1N ⊗ S−1/2 X)>IN×N ⊗ S−1/2Y ,

where the matrix S is given by

S := XDZ X> + DE .

The covariance matrix of the BLUE
If the influence matrix X is non-singular, the covariance matrix of Lŝ is of
the form:

Cov(Lŝ) =
1
N

(
LDZ L> + L (X>D−1

E X)−1 L>
)
.
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The influence of different measurement types on Cov(Lŝ)

The covariance matrix of the BLUE
If the influence matrix X is non-singular, the covariance matrix of Lŝ is of
the form:

Cov(Lŝ) =
1
N

(
LDZ L> + L (X>D−1

E X)−1 L>
)
.

Cov(L ŝ) depends on

DZ which describes the covariances of the random states at the
different nodes.
DE which describes the variances of the measurement errors at the
different nodes.

I The diagonal entries of DE indicate the inaccuracy of the applied
measurement procedures at the different nodes.

I If the applied measurement type is precise at node i , the variance σ2
iE

will be small (i = 0, . . . , I ).
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Transfer to approximate design theory I

The covariance matrix of the BLUE
If the influence matrix X is non-singular, the covariance matrix of Lŝ is of
the form:

Cov(Lŝ) ∝
(
LDZ L> + L (X>D−1

E X)−1 L>
)
.

Set

δi := 1
σ2
iE
, i = 0, . . . , I

δ = (δ0, . . . , δI )

Dδ = diag(δ0, . . . , δI ).

We can restrict ourselves to the condition that

δ ∈ ∆ := {δ = (δ0, δ1, . . . , δI )
> ∈ (0, 1)I+1;

I∑
i=0

δi = 1}
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The approximate design problem

Target: Determine approximate design δ = (δ0, . . . , δI ) ∈ ∆ such that

C̃ (δ) =
(
LDZ L> + L (X>Dδ X)−1 L>

)
becomes small in some sense.

Question: Which design criterion should be preferred?

We are interested in estimating L s.

⇒ Determine A-optimal designs: Determine the design δ∗ ∈ ∆ that
minimizes

tr(C̃ (δ)) = tr
(
LDZ L> + L (X>Dδ X)−1 L>

)
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A-optimal design in general network

Theorem

Let the influence matrix X be non-singular. Then the A-optimal design
δ∗ = (δ∗0 , δ

∗
1 , . . . , δ

∗
I ) for estimating L s, that minimizes

tr
(
L (X>Dδ X)−1 L>

)
is given by

δ∗i =

√
vi∑I

j=0
√
vj
,

where vi = u>i (X−1)>L>LX−1ui for i = 0, 1, . . . , I .

Here ui denotes the (i + 1)-th unit vector.

The determination of the A-optimal design reduces to the calculation of
the inverse of the influence matrix X.
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A-optimal design in the star-network

The network consists of I + 1 nodes 0, . . . , I

At a specific node i , i = 0, . . . , I :

let a be the influence of the state si on the
expected observation,

let b be the influence of the state sj (j 6= i) of
the adjacent nodes on the expected observation.

The observations are of the form:

Yn =

(
a b1>I
b1I aII×I

)
s+Zn+En , n = 1, . . . ,N

⇒ A-optimal designs can be calculated analytically.

Kirsten Schorning A-optimal designs for state estimation in networks 17



A-optimal design in the star-network

The network consists of I + 1 nodes 0, . . . , I

At a specific node i , i = 0, . . . , I :

let a be the influence of the state si on the
expected observation,

let b be the influence of the state sj (j 6= i) of
the adjacent nodes on the expected observation.

The observations are of the form:

Yn =

(
a b1>I
b1I aII×I

)
s+Zn+En , n = 1, . . . ,N

⇒ A-optimal designs can be calculated analytically.

Kirsten Schorning A-optimal designs for state estimation in networks 17



A-optimal design in star network

Corollary

If b2 6= 1
I a

2, then the A-optimal design δ∗ = (δ∗0 , δ
∗
1 , . . . , δ

∗
I ) for estimating

the expected state vector s in the star network is given by δ∗0 =
√
w

I
√
v+
√
w

and δ∗i =
√
v

I
√
v+
√
w

for i = 1, . . . , I , where

w = a2 + Ib2 ,

and

v =

(
b2 +

(a2 − (I − 1)b2)2

a2 + (I − 1)
b4

a2

)
.
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The weight in the central node of the star network
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Fig.: Optimal values for δ0 depending on the quantity b, the influence of the
central node 0, for a = 1.
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A-efficiencies of other designs in the star network
We consider the intuitive design given by δ = (0.5, 0.5/I , . . . , 0.5/I ).
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Fig.: A-efficiency of the design which allocates the most precise device in the
central node.
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Extension to connected star networks – Shooting star

The network is given by a shooting star, its
adjacency matrix is of the form:

X =


a b b b 0
b a 0 0 0
b 0 a 0 0
b 0 0 a b

0 0 0 b a



The A-optimal weights for b = 0.75:
(0.222, 0.175, 0.175, 0.216, 0.212)
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Extension to connected star networks – Two connected stars

The network is given by two connected stars,
its adjacency matrix is of the form:

X =



a b b b 0 0
b a 0 0 0 0
b 0 a 0 0 0
b 0 0 a b b

0 0 0 b a 0
0 0 0 b 0 a



The A-optimal weights for b = 0.75:
(0.174, 0.163, 0.163, 0.174, 0.163, 0.163)
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Conclusion

A simple random state model can be modelled by using graph theory.

By a relaxation of the original problem of placing different
measurement types of different precision to the nodes of the network,
we obtain an approximate design problem.

The optimization problem can be solved by calculating the inverse of
the influence matrix X.

This design problem can be solved analytically in some specific
networks (e.g. star).
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Further results and outlook

Further results are available for

non-simultaneous observations at the different nodes of the network,

other types of network, for instance the wheel network,

for the case, where the influence matrix is singular and the complete
state vector s is not identifiable anymore.

⇒ Müller, C.H., Schorning, K.(2023) A-optimal designs for state
estimation in networks. Stat Papers.

Outlook: we currently work on

more general results on the properties of A-optimal designs for
networks: for instance symmetry.

robust designs w. r. t. the influence matrix X.

the extension of the model to the case of time-dependent observations.
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Thank you!
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