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Drug Development

Goal: develop new safe and effective 
medicines for unmet medical needs
 Long (10+ years from discovery to 

market)
 Complex (scientifically, operationally, 

must comply with regulatory 
requirements)

 Expensive (~2.6B USD of R&D costs*)  
 Risky (many compounds fail; only 

~9.6% of drug development programs 
make it to approval)
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Drug development programs include multiple 
studies of increasing complexity
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Phase IV

• Optimization of 
drug use

• Population 
PK/PD models

Phase III

• Test clinical 
hypotheses in 
RCTs

• Refine dose 
and regimen 
for special 
populations

Phase II

• Update PK/PD 
models to 
optimize dose 
and regimen in 
phase III

• Assess 
probability of 
success

Phase I

• Utilize safety, 
PK, and PD 
data to project 
dose and 
regimen for 
phase II

Pre-clinical

• Animal studies 
to calibrate 
dose range for 
phase I studies 
in humans



Why optimal design?
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To achieve higher quality 
results (higher power, more 
accurate estimates of 
treatment effects) for the 
given resource constraints

To have lower sample size 
and/or decreased study cost 
(and potentially faster study 
completion) for the given data 
quality objectives

Study participant benefit: 
maximize information from 
the trial while minimizing 
exposure of study subjects to 
suboptimal treatments



Optimal design considerations

Regression 
model

Linear

GLM

Nonlinear 

Design region

Discrete
(treatment 

group)

Continuous
(dose levels; 

sampling 
time points)

Likelihood and 
Fisher 

information 
matrix

Weighted 
sum of 

elemental  
information 
matrices at 
the chosen 

design points 

Study 
objectives

Test a 
research 

hypothesis

Estimate
dose-

response

Predict 
response

Design 
criterion

Power

D-optimal

I-optimal
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 0 ≤ 𝑑𝑑1 < 𝑑𝑑2 < ⋯ < 𝑑𝑑𝐾𝐾 - study doses
 Outcome: Toxicity (Yes/No)
 Probability of toxicity is modeled 

using a 2-parameter logistic curve:

𝑃𝑃 𝑑𝑑 = Pr 𝑌𝑌 = 1 𝑑𝑑 =
1

1 + 𝑒𝑒−(𝛼𝛼+𝛽𝛽𝛽𝛽)

 𝛼𝛼 and 𝛽𝛽 > 0 are unknown 
parameters; monotone increasing 
dose-toxicity relationship
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Phase I dose-finding study 

 Estimands of interest:
 𝑃𝑃(𝑑𝑑) for a given 𝑑𝑑 > 0
 Maximum Tolerated Dose - say, 20th

percentile of the dose-tox curve: 𝐷𝐷20 =
(log 0.2

1−0.2
− 𝛼𝛼)/𝛽𝛽



Phase I dose-finding study
How can the design be optimized?
 Design: 𝛏𝛏 = 𝑑𝑑𝑖𝑖 ,𝜌𝜌𝑖𝑖 , 𝑖𝑖 = 1, … ,𝐾𝐾
 𝑑𝑑𝑖𝑖 ’s – dose levels
 𝜌𝜌𝑖𝑖 = 𝑛𝑛𝑖𝑖/𝑛𝑛 – allocation proportion for 𝑑𝑑𝑖𝑖; 𝑛𝑛 = sample size

 Fisher Information Matrix (FIM) for design 𝛏𝛏:
𝑴𝑴 𝛏𝛏,𝛼𝛼,𝛽𝛽 = 𝑛𝑛∑𝑖𝑖=1𝐾𝐾 𝜌𝜌𝑖𝑖 𝑴𝑴𝑖𝑖 𝛼𝛼,𝛽𝛽 , where 𝑴𝑴𝑖𝑖 𝛼𝛼,𝛽𝛽 = information at dose 𝑑𝑑𝑖𝑖

 Optimal design problem: 
minimize Φ 𝑴𝑴−1 𝛏𝛏,𝛼𝛼,𝛽𝛽 w.r.t. 𝛏𝛏

Φ = det ⇒ D-optimality ⇒min(volume of the confidence ellipsoid for 𝛼𝛼,𝛽𝛽)
 Convex optimization theory, algorithms and numerical techniques, all beyond the 

scope of presentation; see Fedorov and Leonov (2014) and references therein
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 The D-optimal design minimizing 𝑴𝑴−1 𝛼𝛼,𝛽𝛽
is 2-point, symmetric around 𝐷𝐷50, equally 
supported at the 17.6th and 82.4th percentiles 
of the curve (Wetherill, JRSSB 1963)

𝛏𝛏𝐷𝐷−𝑜𝑜𝑜𝑜𝑜𝑜∗ = (𝐷𝐷17.6, 1
2
), (𝐷𝐷82.4, 1

2
)

𝐷𝐷18 = log(0.176/0.824)−𝛼𝛼
𝛽𝛽

, and

𝐷𝐷82 = log(0.824/0.176)−𝛼𝛼
𝛽𝛽

 Yang and Stufken (2009) gave a general 
solution for nonlinear models with two 
parameters
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Phase I dose-finding study
D-optimal design
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Phase I dose-finding study
Example: How to facilitate a comparison among designs?

 Efficiency of the implemented design 𝛏𝛏 (Karp et al., 2001) relative to the D-optimal 

design 𝛏𝛏∗(for the same sample size) is Deff = 𝑴𝑴
−1 𝛏𝛏∗,𝜽𝜽

|𝑴𝑴−1 𝛏𝛏,𝜽𝜽 |
= 3.45⋅10−7

5.16⋅10−7

1/2
= 0.82
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Merits
 ODs provide important theoretical 

benchmarks to compare various 
designs w.r.t. selected optimality 
criteria
 If properly implemented, ODs can help 

achieve study goals with a reduced 
sample size/study cost
 D-optimal design maximizes 

information for estimating the entire 
dose-toxicity curve

Limitations
 ODs depend on the choice of 

statistical model
 ODs frequently depend on the true 

parameter values (local optimality)
 D-optimal design allocates 50% of 

subjects to the doses with toxicity 
probabilities 18% and 82% - may not 
be ‘clinically optimal’
 Frequently require advanced 

numerical optimization

Phase I dose-finding study
What are merits and limitations of optimal designs?



Phase I dose-finding study
Can a design combine ‘treatment’ and ‘learning’ goals?
Constrained Bayesian optimal designs (Haines, Perevozskaya, and Rosenberger, 2003):

 2-parameter logistic dose–toxicity model, with a prior distribution for 𝜽𝜽 = 𝛼𝛼,𝛽𝛽

 Constrained optimization problem:
𝐸𝐸 log 𝑴𝑴−1 𝛏𝛏,𝜽𝜽 → min (w.r.t. 𝛏𝛏)

subject to to an “overdose” constraint: ∑𝑖𝑖=1𝐾𝐾 𝜌𝜌𝑖𝑖Pr(𝜇𝜇𝑅𝑅 ≤ 𝑑𝑑𝑖𝑖) ≤ 𝜀𝜀

(𝜇𝜇𝑅𝑅=maximum dose that cannot be exceeded; 𝜀𝜀 > 0 small, investigator-specified constant)

 Implementation in practice:
 2-stage: 𝑛𝑛0 subjects are assigned to doses using some pilot design + 𝑛𝑛1 subjects are 

assigned to doses according to updated optimal design 
 Sequential: Small pilot design + subsequent sequential assignments to maximize 

incremental gain in information while protecting patient safety

13



Phase I/II efficacy-toxicity study 

 Development of a targeted therapy in oncology is different from                          
that of a cytotoxic drug
 Lower risk of toxicity
 Efficacy may plateau at doses below MTD

 Seamless phase I/II designs incorporate toxicity and efficacy (response) in 
dose-finding objectives
 Joint modeling of a dose–toxicity–efficacy relationship
 Phase I/II trial is typically larger that a single phase I trial
 Avoids administrative wait between phase I and II protocol activation
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 Ω = {𝑑𝑑1 < ⋯ < 𝑑𝑑𝐾𝐾} - study doses
 Dose-toxicity and dose-efficacy 

probability curves
𝑝𝑝.1(𝑑𝑑) = Pr(𝑌𝑌𝑇𝑇 = 1|𝑑𝑑) (Tox)
𝑝𝑝1. 𝑑𝑑 = Pr(𝑌𝑌𝐸𝐸 = 1|𝑑𝑑) (Eff)

 Efficacy without toxicity: 𝑝𝑝10 𝑑𝑑 =
Pr 𝑌𝑌𝐸𝐸 = 1 𝑌𝑌𝑇𝑇 = 0,𝑑𝑑 × Pr 𝑌𝑌𝑇𝑇 = 0 𝑑𝑑

 Study goals:
 Estimate Optimal dose 
 Cluster dose assignments at and around 

Optimal dose 
15

Phase I/II efficacy-toxicity study
Bivariate binary outcomes



 Nonparametric up-and-down design 
(Ivanova, 2003)

 Bayesian ‘best intention’ designs
 Bivariate CRM (Braun, 2002)
 Eff-tox method (Thall and Cook, 2004)

 Adaptive penalized optimal designs 
(Dragalin and Fedorov, 2006)

 It is difficult to recommend any 
particular design as “best”
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Phase I/II efficacy-toxicity study
Various designs have been proposed



Phase I/II efficacy-toxicity study
Adaptive penalized ODs (Dragalin and Fedorov, 2006)

 Statistical model for dose–response: 𝜋𝜋𝑇𝑇,𝐸𝐸(𝑑𝑑,𝜽𝜽), 𝑑𝑑 ∈ Ω
 Fisher information matrix:𝐌𝐌 𝛏𝛏,𝜽𝜽 = ∑𝑘𝑘=1𝐾𝐾 𝜌𝜌𝑘𝑘𝜋𝜋𝑇𝑇,𝐸𝐸(𝑑𝑑𝑘𝑘 ,𝜽𝜽)
 Cost function penalizing doses with low success and high toxicity: 
𝜙𝜙 𝑑𝑑,𝜽𝜽,𝐶𝐶𝐸𝐸 ,𝐶𝐶𝑇𝑇 > 0 (where 𝐶𝐶𝐸𝐸 ,𝐶𝐶𝑇𝑇 ≥ 0 are user-specified constants)

 Penalized OD problem:

log
𝐌𝐌−1 𝛏𝛏,𝜽𝜽

∑𝑘𝑘=1𝐾𝐾 𝜌𝜌𝑘𝑘𝜙𝜙 𝑑𝑑𝑘𝑘 ,𝜽𝜽,𝐶𝐶𝐸𝐸 ,𝐶𝐶𝑇𝑇
→ min (w.r.t. 𝛏𝛏)

 Implementation: some ‘start-up’ dose-escalation design to ascertain initial data 
for estimating 𝜽𝜽, then sequential dose assignments to maximize incremental 
increase of information per cost unit
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Phase I/II efficacy-toxicity study
Potential value of adaptive penalized optimal designs

 Substantial improvement in accuracy of dose–response estimation compared 
to ‘best intention’ designs (Dragalin and Fedorov, 2006; Dragalin, Fedorov, and 
Wu, 2008) 

 Good balance between ‘treatment’ and ‘learning’ goals in small-to-moderate 
experiments; known asymptotic properties (Pronzato, 2010)

 Bayesian adaptive penalized D-optimal design has competitive performance to 
Thall and Cook’s Eff-Tox method (Gao and Rosenberger, 2013)

 While in practice it may be difficult to gain IRB clinical approval for these 
designs, they may be more readily applicable in animal studies where ethical 
issues are not as high as in human experiments
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Phase II dose-ranging study 

 Randomized, placebo- and/or active-controlled trial with                                    
several doses of an investigational drug, with sample sizes                                       
up to several hundred patients

 Research questions in phase II:
 Is there any evidence of a drug effect (proof-of-concept)?
 Which dose(s) exhibit a response different from the control?
 What is the dose–response relationship?
 What is the “optimal” dose for taking into phase III?

 Design considerations:
 Sample size
 Dose levels 
 Allocation proportions for the chosen doses
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Phase I/II dose-ranging study
Optimal designs

Various optimal designs are available for addressing different study goals under 
different dose-response models:
 Biedermann, Dette, and Zhu (2007, JSPI)
 Dette, Bretz, Pepelyshev, and Pinheiro (2008, JASA)
 Dette, Kiss, and Bevanda (2010, Biometrika)
 Padmanabhan and Dragalin (2010, Biom J) 
 Miller, Guilbaud, and Dette (2007, J Biopharm Stat)
 And many more...
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 Quadratic dose-response model for 
event times: 𝑇𝑇~𝑊𝑊𝑒𝑒𝑖𝑖𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊 with 
𝑀𝑀𝑒𝑒𝑑𝑑𝑖𝑖𝑀𝑀𝑛𝑛 𝑇𝑇 = exp 𝛽𝛽0 + 𝛽𝛽1𝑑𝑑 + 𝛽𝛽2𝑑𝑑2 ln 2 𝑏𝑏

Doses: 𝑑𝑑 ∈ [0,1]; 0 =placebo; 1=MTD
Parameters: 𝜽𝜽 = (𝛽𝛽0,𝛽𝛽1,𝛽𝛽2, 𝑊𝑊), 𝑊𝑊 > 0

 Observations may be right-censored 
 Objective: estimate dose–response 

as accurately as possible by 
allocating 𝑛𝑛 subjects to ‘most 
informative’ dose levels
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Phase II dose-ranging study
Example: D-optimal design for time-to-event outcomes

Plausible median time-to-event dose-response
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Phase II dose-ranging study
Potential value of optimal design for time-to-event 
outcomes (Ryeznik et al., 2018a, b)

 D-optimal design depends on the 
underlying model and the amount of 
censored data

 Equal allocation (uniform) design 
may be inefficient

 Adaptive D-optimal design with early 
stopping facilitates learning about the 
model and can reduce study size 
with better estimation accuracy than 
the uniform design

Weibull model with 𝛽𝛽0 = 1.9, 𝛽𝛽1 = 0.6, 𝛽𝛽2 = 2.8, 
𝑊𝑊 = 0.65, and average probability of event = 50%

Allocation proportions at optimal doses 
in the presence of censoring

True dose-response curve
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Phase III randomized controlled trial (RCT)
Design considerations

Primary outcome

Number of treatment arms

Choice of control group

Number of study sites

Sample size

Allocation ratio

Randomization procedure

 Allocation ratio
 Equal (1:1) allocation is frequently (but 

not always) optimal

 Randomization procedure
 Tradeoff between treatment balance 

and allocation randomness



Unequal allocation may sometimes be 
preferred:
 Heteroscedastic outcomes
 Unequal treatment cost
 Ethical considerations
 Vaccine RCTs
 Platform trials

Response-adaptive randomization 
(RAR) to target optimal allocation in a 
𝐾𝐾-arm RCT:
 Well-developed theory (Hu and 

Rosenberger, 2003), conceptually 
different from “Thompson sampling”

 Estimators and statistical tests have 
known asymptotic properties under 
widely satisfied conditions
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Phase III randomized controlled trial (RCT)
Design considerations



Response-adaptive randomization (RAR) 
Further challenges and opportunities

Robertson et al. (2023) provides a fresh outlook at methodological and practical 
aspects of RAR in clinical trials
Some important research questions:
 How to define ‘optimal allocation’ given that the number of experimental treatment 

arms is not known upfront? (Bofill Roig et al., 2023)
 How to modify allocation to the shared control over time given that experimental 

arms may be added/dropped during the study? (Kaizer et al., 2018)
 Incorporating stratification factors (genetic signatures and other predictive 

biomarkers) (Atkinson, 2015 Biometrika)
 Strong control of the type I error rate
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 PK: description of the plasma 
concentration of a drug as a function of 
time (what the body does to the drug)

 PD: description of the drug effects 
(what the drug does to the body)

 PK/PD model links the effect of dose 
on trug concentration and drug 
response over time
 Mechanistic modeling of individual subject 

profiles with an assessment of 
corresponding uncertainty
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Population PK/PD studies

Nonlinear mixed effects model (NLMEM) 
(Fedorov and Leonov, 2014 Chapter 7)

𝒀𝒀𝑖𝑖 = 𝒇𝒇 𝒕𝒕𝑖𝑖 ,𝒅𝒅𝑖𝑖 ,𝜽𝜽,𝜼𝜼𝑖𝑖 + 𝜀𝜀𝑖𝑖, 𝑖𝑖 = 1, … ,𝑛𝑛
 𝒀𝒀𝑖𝑖 = vector of responses
 𝒇𝒇 = nonlinear (vector) function
 𝒅𝒅𝑖𝑖 = vector of administered doses
 𝒕𝒕𝑖𝑖 = vector of sampling time points
 𝜽𝜽 = vector of typical parameter values
 𝜼𝜼𝑖𝑖 ∼ 𝑀𝑀𝑀𝑀𝑀𝑀(𝟎𝟎,𝛀𝛀) = inter-individual 

variabilities
 𝜺𝜺𝑖𝑖 ∼ 𝑀𝑀𝑀𝑀𝑀𝑀(𝟎𝟎,𝚺𝚺) = measurement errors



Population PK/PD studies
Optimal Designs

 OD in this context involves maximization of some criterion of the population 
FIM which is not a closed-form expression (Mentre et al., 1997)

 Elements to be optimized: dose; sampling times; sampling frequency, etc.
 Value:
 ODs can help characterize a typical pattern of PK over time and uncertainty in the 

observations (very important in small studies)
 Number of sampling times may be reduced ⇒ savings in the study cost
 Population ODs may help improve existing therapies or diagnostics
 Population ODs may help bridge different populations (e.g., adult to children)

 Software: a head-to-head comparison of 5 different tools (Nyberg et al., 2015)
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Population PK/PD studies
Model-based adaptive optimal designs (MBAOD)

 MBAOD attempts to overcome potential non-robustness to changes in the 
parameter values of locally optimal designs

 Examples:
 PK bridging study from adults to children (Strömberg, 2016) – MBAOD requires fewer 

children to fulfill the FDA precision criteria compared to traditional estimation 
methodologies

 Robust optimality criterion in MBAOD (Strömberg and Hooker, 2017) – reduced 
sensitivity to model misspecification and improved practicality of experimental design

 Software: R package MBAOD (https://github.com/andrewhooker/MBAOD)
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https://github.com/andrewhooker/MBAOD


 Precision dosing in different chronic 
diseases/conditions, such as 
diabetes, HIV, Parkinson’s disease

 Development, engineering, testing, 
and validation of closed-loop 
systems for disease management

 Complex research problems 
combining pharmacometrics, optimal 
control theory, machine learning, big 
data analytics, etc.
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Future Perspective
Optimal designs for biosensor data 

Pharmacometric modeling & simulation 
to optimize:
• Time of sensing
• Dose level
• Timing of dose delivery



More details in two JSTP papers:
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