

Christian-Albrechts-Universität zu Kiel

On the impact of decision rule assumptions in experimental designs on preference recovery

Sander van Cranenburgh, Jürgen Meyerhoff, Andrea Wunsch, Katrin Rehdanz

Background

- Optimal experimental designs in choice modelling field:
 - are widely used for designing Stated Choice (SC) experiments
 - aim to maximise the information to statistically efficiently estimate the choice model's parameters
- Almost all experimental designs are optimised for the assumption that decision makers use linear-additive Random Utility Maximisation (RUM) as the decision rule

$$U_i = \sum_{m=1..M} \beta_m x_{im} + \varepsilon_i$$

- Compelling evidence that people use various non-RUM decision rules, including:
 - Satisficing [Simon, 1955]
 - Elimination-by-aspects [Tversky, 1972]
 - Regret minimization [Loomes & Sugden 1982]

$$y_{ni} = \begin{cases} 1 & if \quad U_{ni} > U_{nj} \quad \forall j \neq i \\ 0 & otherwise \end{cases}$$

Background

• When using experimental designs optimised for RUM, researchers (implicitly) assume that the decision rule used to optimise the design does not affect the choice behaviour

Research Goals & approach

Research Goals (RGs) To examine whether:

- 1. The **decision rule assumption** underlying the **experimental design** affects respondents' **choice behaviour** (i.e. making a particular model more likely)
- 2. Some choice tasks invoke a particular RUM or non-RUM decisions rule

(i.e. making a RUM or a non-RUM model more likely)

Approach RG1

- Create two experimental designs, one optimised for linear-additive RUM decision rule and optimized for non-RUM decision rule*
- 2. Randomly assign respondents to the RUM or to the non-RUM design
- Examine the impact of the design decision rule on the likelihood of competing models*

 $P(f|C_{RUM}) \stackrel{?}{=} P\left(f|C_{RUM}\right)$ $P(f|C) \stackrel{?}{=} P(f)$

Research Goals & approach

Research Goals (RGs) To examine whether:

- 1. The **decision rule assumption** underlying the **experimental design** affects respondents' **choice behaviour** (i.e. making a particular model more likely)
- 2. Some choice tasks invoke a particular RUM or non-RUM decisions rule

(i.e. making a RUM or a non-RUM model more likely)

Non-RUM decision rule

• We use **regret minimisation** as the non-RUM decision rule

$$RR_{i} = \sum_{m=1}^{M} \sum_{j \neq i} \mu \ln \left(1 + \exp \left(\frac{\beta_{m}}{\mu} \left[x_{jm} - x_{im} \right] \right) \right) + \varepsilon_{i}$$

- Experimental design theory for RRM models has been developed by (Van Cranenburgh et al., 2018) and implemented in Ngene software
- Also allows to optimise designs for a **combination** of RUM and RRM

$$P(f|C_{RUM}) \stackrel{?}{=} P\left(f|C_{RUM}\right)$$

 $P(f|C) \stackrel{?}{=} P(f)$

Data collection

Context

- Coastal adaptation to climate change at North Sea and Baltic Sea coasts, Germany
- Adaptation strategies were described by 6 attributes: *beach nourishment, dyke height, planting of the dykes, shoreline conditions, local relocations of dykes, individual payment*
- Respondents had to choose between three alternatives, two hypothetical adaptation scenarios and the status quo

Data collection

Wenn nur die folgenden Alternativen für die Nordseeküste zur Auswahl stehen würden: Welche Alternative bevorzugen Sie?

Bitte wählen Sie eine Alternative aus. Liegt die Zahlung über dem Betrag, den Sie tatsächlich zahlen würden, dann überdenken Sie bitte Ihre Auswahl noch einmal.

		Anpassung A	Anpassung B	Heute
Sandvorspülung (auf 60 km Länge)		20 m	40 m	40 m
Deicherhöhung (auf 950 km Länge)		100 cm	150 cm	50 cm
Bepflanzung von Deichen		5 km	30 km	5 km
Weiche Ufer		0 km	0 km	0 km
Rückverlegung von Deichen und Dünen	T	9 Stellen	6 Stellen	1 Stelle
Meine Zahlungen pro Jahr (für die nächsten 10 Jahren)	E	20€	110€	0€
Ich wähle		\bigcirc	\bigcirc	\bigcirc

Beach nourishment

Dyke heightening

Planting of dykes

Soft shore

Realignment of dykes and dunes

My payment

weiter ...

Data collection

Context

• Two designs (48 sets, 12 within 4 blocks) :

> Design 1: Bayesian D-eff design **optimised for RUM-only** with weak priors

Design 2: Bayesian D-eff design optimised for mixture of RUM and RRM (50:50) with weak priors

• Two coastlines: Baltic Sea, North Sea → 4 data set

		Coa	stline
		Baltic Sea	North Sea
Experimental design optimised for:	RUM	T1	T3
	Mixture of RUM and RRM	T2	T4

←Each data set contain between 800 - 1000 respondents

← 9,500 – 12,000 observations per data set

Results RG1

Research Goal 1: examine whether the **decision rule assumption** underlying the **experimental design** affects respondents' choice behaviour (i.e. making a particular model more likely)

Final Log-likelihood	T1 RUM Baltic Sea	T2 RUM_RRM Baltic Sea	T3 RUM North Sea	
1: lin-add RUM	-10,183	-10,145		
2: μRRM	-10,183	-10,141	-11,931	

 \blacktriangleright Overall small model fit differences (µRRM model collapses to lin-add RUM)

→ The design decision rule does not seem to impact the relative likelihood of competing models

Approach RG2

Research Goal 2: examine whether some **choice tasks** invoke a particular RUM or non-RUM decisions rule

 $P(f|C) \stackrel{?}{=} P(f)$

Approach RG2

Research Goal 2: examine whether some **choice tasks** invoke a particular RUM or non-RUM decisions rule

$$P(f|C) \stackrel{?}{=} P(f)$$

Approach RG2

Research Goal 2: examine whether some **choice tasks** invoke a particular RUM or non-RUM decisions rule

 $P(f|C) \stackrel{?}{=} P(f)$

Results RG2

Results RG2

RUM-invoking tasks

> Some choice tasks seem to invoke a particular decision rule

> Choice tasks optimised for RUM seem to produce stronger decision rule invocations.

Conclusions

- The decision rule assumption underlying optimal experimental design do not seem to affect respondents' choice behaviour (i.e. making a particular model/decision rule more likely)
- Some choice tasks do invoke a particular decision rule violating the assumption that the data generating process of decision makers is invariant to the choice tasks design
 - \rightarrow In theory, this opens up the possibility to engineer desired outcomes using the design (which is highly undesirable!)

3. Unclear what properties drive that some choice tasks invoke a linear-additive RUM decision rule while others invoke an RRM decision rule, and yet others seem neutral

 $P(f|C_{RUM}) = P\left(f|C_{RUM}\right)$

 $P(f|C) \neq P(f)$

Further research

To deepen understanding of the impact of choice tasks on choice behaviour, we need to:

- 1. Improve data collection and experimental design:
 - Use designs optimised for RUM and RRM only (instead of a combination of RUM and RRM)
 - Use designs with fewer attributes
- 2. Extend analysis towards more than 2 decision rules (at least in the modelling)
- 3. Deepen investigation into what properties drive that some choice tasks invoke a particular decision rule

On the impact of decision rule assumptions in experimental designs on preference recovery

Questions?

S.vancranenburgh@tudelft.nl

