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Motivating Example

 Develop a method for extracting pesticides in potato.

e 8 factors under study at 3 levels.

e No more than 40 runs.
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Levels
Factors -1 Nominal (0) 1
A Agitation Time (min) 20 30 40
B Shaking Time 1 (min) 2 5 8
C Centrifuge 1 Temperature (2C) 16 20 24
D Centrifuge 1 Speed (rpm) 6000 8000 10000
E Centrifuge 1 Time (min) 3 5 7
F Shaking Time 2 (min) 2 5 8
G Centrifuge 2 Temperature (2C) 16 20 24
H Centrifuge 2 Time (min) 3 5 7




Motivating Example

 Develop a method for extracting pesticides in potato.
e 8 factors under study at 3 levels.

e No more than 40 runs.

Design Problem: Construct an efficient experimental design.




Model of Interest

* Full guadratic model in 8 factors.

y=po+ 1A+ 2B+ -+ PsH )
+ 61248 + 5134C + - - + PrsGH :
+ B11A% + Boa B + -+ + Bss H? .
+ €

1 Intercept

8 linear effects

28 interactions

8 quadratic effects

Total: 45 terms.

 However, the number of effects is larger than the number of runs

available.

 Therefore, model-based optimal designs (Goos and Jones, 2011)

cannot be used.



Screening Designs

Screening designs allow us to identify the active effects of many factors
using an economical number of runs.

To use these designs, we assume that only a few effects are active.

We concentrate on three-level orthogonal screening designs because:

1. They provide linear effects that are not correlated with each other.
2. They allow the study of interactions and quadratic effects.



Available Three-Level Orthogonal Designs

Number of Runs
Design

17 20 24 26 27 28 30 32 33 36 40

Definitive Screening Design (Jones &
Nachtsheim, 2011; Xiao et al., 2012)

Fold-over of Weighing Matrix (Georgiou et
al., 2014)

Orthogonal Array (Cheng & Wu, 2001; Xu et
al., 2004)

Our Proposed Design




Available Three-Level Orthogonal Designs

Number of Runs
Design

17 20 24 26 27 28 30 32 33 36 40

Definitive Screening Design (Jones &
Nachtsheim, 2011; Xiao et al., 2012)

Fold-over of Weighing Matrix (Georgiou et
al., 2014)

2004}

Our Proposed Design

OMARS designs (Nufiez-Arez & Goos, 2020,
2022; Hameed et al., 2023)

Almost all designs are OMARS designs!



Orthogonal Minimally Aliased Response
Surface (OMARS) Designs

OMARS designs are orthogonal designs in which:

* The linear effects are uncorrelated with interactions and quadratic
effects.

They are attractive in terms of one or more statistical criteria such as
projection and estimation efficiencies (Sun 1999; Lin & Nachtsheim, 2000).

Standard OMARS designs have 3 levels per factor, but extensions exist
that accommodate two-level or blocking factors (Nufiez-Ares et al., 2023).

(Nunhez-Ares & Goos, 2018)



Research question

OMARS designs are currently constructed using an enumeration
algorithm (Nunez-Ares & Goos, 2020) that is computationally expensive
for large numbers of factors.

In this talk, we introduce an effective method for constructing good
standard OMARS designs with large number of quantitative factors.
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Outline

2. Construction method for orthogonal minimally aliased response
surface (OMARS) designs
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Construction by Example

Goal: Construct an 8-factor OMARS
design with 33 runs.

Step 1. Consider an 8-factor definitive
screening design with 17 runs.

* It is constructed by folding over a
conference matrix (Xiao et al., 2012;
Schoen et al., 2022).

A B C D E F G H
o 1 1 1 1 1 1 1
o -1 -1 -1 -1 -1 -1 -1
1 0 1 1 -1 1 -1 -1
-1 0 -1 -1 1 -1 1 1
1 -1 0 1 1 -1 1 -1
-1 1 0 -1 1 1 -1 1
1 -1 1 o0 1 1 -1 1
-1 1 1 0 -1 -1 1 -1
1 1 -1 -1 0 1 1 -1
-1 1 1 1 0 -1 -1 1
1 -1 1 -1 -1 0 1 1
-1 1 -1 1 1 0 -1 -1
1 1 1 1 -1 -1 0 1
-1 1 1 -1 1 1 0 -1
1 1 1 -1 1 -1 -1 O
-1 -1 -1 1 -1 1 1 O
O 0 0 0 O O O O




Construction by Example

Step 2. Concatenate two copies of the
8-factor DSD without the center run.

Step 3. Consider column permutations
and fold-overs of columns in the lower
design to minimize

Sum of squared correlations between:

e Quadratic effect and interaction
columns

e Pairs of interaction columns
of D.

Upper

Lower

1 1 1 1 1 1 1 1 1 1 1 1 1 1
(I—\I—\l—\l—\l—\l—\l—\}—\l—\l—\l—\l—\}—‘l—\oo}—\I—‘I—\I—\l—\l—\l—\l—\l—\}—\l—\l—\l—\l—\OO)

1 1 LI | 1 1 1 1 1 LI | 1 1 1
R PR R RPRRRPRRPRRRPLOORRRPRRPRRRPRRPRRRRRRRRLROORBR

1 LI | 1 1 1 1 1 LI | 1 1 1 1
R PR R R RPRRRPRRLRRLOORRRRRRRRRRRRRRPRLOORRERER

LI | 1 1 1 1 1 LI | 1 1 1 1 1
R R R R R R RPROORRRRRRRRRRRRRROORRRERRR

1 1 1 1 1 LI | 1 1 1 1 1 LI |
R R R R R R OORRRRPRRRERRRRRRRRROORRRRRERRR

1 1 1 1 LI | 1 1 1 1 1 LI | 1
R R R R OORRRRRERRPRRRRRRRRRPROORRRRRERRRRRR

1 1 1 | D | | I | 1 1 1 | I | | I |
R R OO R RRPRRRRRRPRRRBRRRRROORRRRERRRRRRRRR

1 1 | I | 1 | I | 1 1 | I ) 1 | I |
(oov—\i—\l—\Hl—\l—\l—\HHHl—\l—\Hl—\OOHl—\l—\l—\HHI—\l—\l—\HHv—\i—\l—\}
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Construction by Example

Step 2. Concatenate two copies of the
8-factor DSD without the center run.

Step 3. Consider column permutations
and fold-overs of columns in the lower
design to minimize

Sum of squared correlations between:

e Quadratic effect and interaction
columns

e Pairs of interaction columns

of D. ‘

Properties of OMARS designs with
an even number of factors m

14




Properties of OMARS designs

The correlation between two
quadratic effect columns does not
depend on column changes in the

1.00/

lower design. 075
Design
: 0.50 ® OMARS
For our m-factor OMARS design, the ® DSD

absolute correlation between two - ././.,_,_.,__.———-
quadratic effect columns is: | e
0.00;

m—6 8 10 12 14 16 18 20

] Number of factors
5(m—1)
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Correlation between a quadratic effect and an
interaction column

Type 1: Not sharing a factor. Type 2: Sharing a factor.
A% and BC A% and AB

For our m-factor OMARS design, For our m-factor OMARS design,

this correlation is 0. the absolute correlation is:
Im+1
0O or .
5(m—-1)(m-2)
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Correlation between a quadratic effect and an

interaction column

Type 1: Not sharing a factor. Type 2: Sharing a factor.

A% and BC

Maximum absolute correlation

For our m-factor OMARS design, 1.00
this correlation is O.

0.75
0.50
0.25

0.00

A% and AB

\\

8 10 12 14 16 18 20
Number of factors

Design

® OMARS
® DSD
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Correlation between two interaction columns

Type 1: Sharing a factor. Type 2: Not sharing a factor.
AB and AC. AB and CD.
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Correlation between two interaction columns

Type 1: Sharing a factor.

1.00

AB and AC.
0.75
For our m-factor OMARS design, Design
this correlation is: 090 ® QARS

0.25

Oor .\‘\‘\‘—\o\..*.

0.00

8 10 12 14 16 18 20
Number of factors
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Type 2: Not sharing a factor.
AB and CD.

Theorem 1. If mis a multiple of 4, the absolute correlation between
two interaction columns involving four factors in our m-factor OMARS
design can be

m-2A

m-—2

for A=2,3,...,m/2.

Example: For the 8-factor designs, we have
e DSD: 0.667 and O.
* OMARS: 0.667, 0.333, and 0.
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Type 2: Not sharing a factor.
AB and CD.

Theorem 2. If mis 2 more than a multiple of 4, the absolute

correlation between two interaction columns involving four factors in
our m-factor OMARS design can be

47 m—4(A+1)
or for A=0,1,...,(m—6)/4.
m-—2 m-—2
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Construction by Example

Step 2. Concatenate two copies of the
8-factor DSD without the center run.

Step 3. Consider column permutations
and fold-overs of columns in the lower
design to minimize

Sum of squared correlations between:

e Quadratic effect and interaction
columns

e Pairs of interaction columns

of D.
‘ We are back!

Upper

Lower

1 1 1 1 1 1 1 1 1 1 1 1 1 1
(I—\I—\l—\}—\l—\l—\l—\}—\l—\l—\l—\l—\l—‘l—\oo}—\I—‘I—\I—\l—\l—\l—\l—\l—\}—\l—\l—\l—\l—\OO)

1 1 LI | 1 1 1 1 1 LI | 1 1 1
R PR R RPRRRPRRPRRRPLOORRRPRRPRRRPRRPRRRRRRRRLROORBR

1 LI | 1 1 1 1 1 LI | 1 1 1 1
R PR R R RPRRRPRRLRRLOORRRRRRRRRRRRRRPRLOORRERER

LI | 1 1 1 1 1 LI | 1 1 1 1 1
R R R R R R RPROORRRRRRRRRRRRRROORRRERRR

1 1 1 1 1 LI | 1 1 1 1 1 LI |
R R R R R R OORRRRPRRRERRRRRRRRROORRRRRERRR

1 1 1 1 LI | 1 1 1 1 1 LI | 1
R R R R OORRRRRERRPRRRRRRRRRPROORRRRRERRRRRR

1 1 1 | D | | I | 1 1 1 | I | | I |
R R OO R RRPRRRRRRPRRRBRRRRROORRRRERRRRRRRRR

1 1 | I | 1 | I | 1 1 | I ) 1 | I |
(oov—\l—\l—\Hl—\l—\l—\HHHl—\l—\Hl—\OOHl—\l—\l—\HHI—\l—\l—\HHv—\i—\l—\}
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-1

1

Evaluating all possible concatenated
designs D would require

8! x 28

Motivating problem

10,321,920 evaluations.

Lower
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Column-Change Variable Neighborhood
Search (CC-VNS) algorithm (Vazquez et

(1) fold-over columns.
(2) swap two columns
Objective Value = 74.57

al., 2018)

Algorithmic Approach

Two moves:
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Fold-over column 8

Column-Change Variable Neighborhood
Search (CC-VNS) algorithm (Vazquez et

(1) fold-over columns.
(2) swap two columns
Objective Value = 46.74

al., 2018)

Algorithmic Approach

TWO moves:
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Swap columns 8 and 9

Column-Change Variable Neighborhood
Search (CC-VNS) algorithm (Vazquez et

(1) fold-over columns.
(2) swap two columns.
Objective Value = 42.81

al., 2018)

Algorithmic Approach

TWO moves:
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R I I R s | (| [ | | [ |l [ ]
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Swap columns 1 and 4

Column-Change Variable Neighborhood
Search (CC-VNS) algorithm (Vazquez et

(1) fold-over columns.
(2) swap two columns.
Objective Value = 38.01

al., 2018)

Algorithmic Approach

TWO moves:
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Swap columns1 and 6

Column-Change Variable Neighborhood
Search (CC-VNS) algorithm (Vazquez et

(1) fold-over columns.
(2) swap two columns.
Objective Value = 37.57

al., 2018)

Algorithmic Approach

TWO moves:
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0011__11_.11__11__11_.11__11__1_1__11__001__11_.111__1__1_11__

V

I
Q

Swap columns 1 and 3

Column-Change Variable Neighborhood
Search (CC-VNS) algorithm (Vazquez et

(1) fold-over columns.
(2) swap two columns.
Objective Value = 36.21

al., 2018)

Algorithmic Approach

TWO moves:
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001_1__11_.1_1__11__11__1_1__11__1_1__11__001__11__1_11__1__111__
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Fold-over columns 4 and 5

Column-Change Variable Neighborhood
Search (CC-VNS) algorithm (Vazquez et

(1) fold-over columns.
(2) swap two columns.
Objective Value = 32.72

al., 2018)

Algorithmic Approach

TWO moves:
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R A R B B R I

V

I
Q

Swap columns 1 and5

Column-Change Variable Neighborhood
Search (CC-VNS) algorithm (Vazquez et

(1) fold-over columns.
(2) swap two columns.
Objective Value = 32.28

al., 2018)

Algorithmic Approach

TWO moves:
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R A R B B R I

11__1_1__001__11__111__1__111__1_1__11__1__1_11__1_1__001__11__1

I
Q

Column-Change Variable Neighborhood
Search (CC-VNS) algorithm (Vazquez et

(1) fold-over columns.
(2) swap two columns
Locally optimal design

al., 2018)

Algorithmic Approach

Two moves:
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I
Q

Column-Change Variable Neighborhood
Search (CC-VNS) algorithm (Vazquez et

al., 2018)
(1) fold-over columns.

Algorithmic Approach
(2) swap two columns
Step 4. Add a row of zeros.

Two moves:
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Column-Change Variable Neighborhood
Search (CC-VNS) algorithm (Vazquez et

al., 2018)
Output: 8-factor OMARS design with 33

(2) swap two columns.
runs.

(1) fold-over columns.

Algorithmic Approach

Two moves:




Outline

3. Numerical comparisons
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Comparison with other 8-factor designs

We compare our 8-factor 33-run OMARS designs with other three-level
orthogonal designs:

e 17-DSD: 17-run Definitive Screening Design (Jones & Nachtsheim, 2011).

e 17-WSD: 17-run design obtained by folding over a weighing matrix
(Georgiou et al., 2014).

e 27-0OD: 27-run nonregular design (Xu et al., 2004).

e 27-OMARS: 27-run OMARS design (Hameed et al., 2023).
* 32-OMARS: 32-run OMARS design (Hameed et al., 2023).
* 36-0OD: 36-run nonregular design (Cheng & Wu, 2001).
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Absolute correlation between pairs of second-order effect columns
(quadratic effects and interaction effects).
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Conclusions

* Our 33-run 8-factor OMARS design is competitive with the benchmark
designs.

* Our construction method can generate attractive OMARS designs with an
even number of factors. For odd numbers of factors, drop one column from
our designs.

* |In the end, a variant of our 33-run 8-factor OMARS design was used in the
extraction experiment (Maestroni, Vazquez, Goos, et al., 2018). It collected
observations on 24 responses.

* The data analysis showed that some factors have significant interactions
and quadratic effects on several responses.
Email: alanv@uark.edu
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Appendix

Definitive Screening Design

Concatenated
Definitive Screening Design

DR ¥ S % 5 8 S P N T gL A T R

|r|
0

0.67 0.36 0.19 0.33 0.39 0.05

17 observations 33 observations
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