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Introduction

Introduction3

Imbalanced data are ubiquitous in scientific fields and applications
with binary response outputs, where the number of instances in
the positive class is much smaller than that in the negative class.

For an online recommendation system in ByteDance, there are
over 10 billion impressions each day, but only about 1.25% are
clicked (negative/positives ≈ 80:1.).

Due to limited storage and computational resources, the goal is to
ignore some non-clicks and reduce negative/positive to 4:1, i.e.,
remove about 95% of the negative instances.

3Wang, H., Zhang, A., and Wang, C. (2021). Nonuniform negative sampling and
log odds correction with rare events data. In NeurIPS 2021.
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Introduction

Big binary imbalanced data

Let {(xi, yi)}Ni=1 be training data that satisfies

P(y = 1 | x) = p(x;θ) :=
1

1 + e−g(x;θ)
, (1)

where y ∈ {0, 1} is the class label, 1 for the case and 0 for the
control; x is the feature vector; and θ is the parameter.

Let N1 be the number of cases, and N0 be the number of controls.
For imbalanced data, i.e., N1 ≪ N0.

When N1 is much smaller than N0, it is more appropriate to
assume that N1 increases in a slower rate compared with N0,
(Wang, 2020; Wang et al., 2021) i.e.,

N1

N0

P−→ 0 and N1
P−→ ∞ as N → ∞. (2)

This requires P(y = 1) → 0 as N → ∞ on the model side.

HaiYing Wang Subsampling adaptive lasso 3 / 32



Introduction

Model that allows P(y = 1) → 0

Let θ = (α,βT)T and write the log odds as

g(x;θ) := log

{
p(x;θ)

1− p(x;θ)

}
= α+ f(x;β) (3)

Here f(x;β) is a smooth function of β, such as a neural net. If it
is linear, the model reduces to the logistic regression.

Denoted the true parameter as θ∗ = (α∗,β∗T)T, and assume that
α∗ → −∞ as N → ∞ and β∗ is fixed.

A diverging α∗ and a fixed β∗ indicates that the both the marginal
and conditional probabilities for a positive instance are small.

This means a covariate change does not convert a
small-probability-event to a large-probability-event.

We can also let β∗ change with N , but as long as β∗ has a
finite limit, the problem is essentially the same as a fixed β∗.
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Introduction

How much information do we really have?

Under some moment assumptions, as N → ∞,√
N1(θ̂mle − θ∗) −→ N(0, Vmle), in distribution. (4)

Table 1: Numerical illustration

Correct model Mis-sprcified model

(N , Na
1 ) tr(V̂e) Na

1 tr(V̂e) Ntr(V̂e) tr(V̂e) Na
1 tr(V̂e) Ntr(V̂e)

(103, 32) 0.169 5.41 169.17 0.969 30.99 968.70

(104, 64) 0.097 6.20 969.29 0.322 20.59 3217.12

(105, 128) 0.045 5.76 4497.24 0.135 17.32 13527.60

(106, 256) 0.018 4.62 18048.40 0.046 11.74 45847.40

Here, V̂e is the empirical variance of θ̂mle and Na
1 = E(N1).
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Introduction

General negative sampling algorithm

ρ: sampling rate on the negative class.

φ(x) > 0: a function with E{φ(x)} = 1.

π(x) = ρφ(x): sampling probability for the negative class.

π(xi, yi) = yi + (1− yi)π(xi): inclusion probability of (xi, yi).

δi = 1 if the i-th data point is selected and δi = 0 otherwise.

Algorithm 1 Negative sampling

For i = 1, ..., N :

1 if yi = 1, record {xi, yi, π(xi, yi = 1) = 1} in the sample;

2 if yi = 0, with probability π(xi, yi = 0),
include {xi, yi, π(xi, yi = 0) = ρφ(xi)} in the sample.
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Introduction

Subsample estimator and A-optimal sampling function

The subsample inverse probability weighted (IPW) estimator of θ is

θ̂w = argmax
θ

N∑
i=1

δi
yig(xi;θ)− log{1 + eg(xi;θ)}

π(xi, yi)
. (5)

Under some moment assumptions, as N → ∞,√
N1(θ̂w − θ∗) −→ N(0, Vw), in distribution, (6)

where Vw = Vmle +Vsub and Vsub depends on φ(·).

Optimal sampling of MLE of rare-events data

The A-optimal function that minimize Vsub is

φmle
A−OS(x) =

p(x;θt)∥M−1ġ(x;θt)∥
E {p(x;θt)∥M−1ġ(x;θt)∥}

, (7)

where M = E{ef(x;βt)ġ⊗2(x;θt)}.
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Subsampling with Variable selection

Adaptive lasso 4

Not all available features/covariates are useful.

Let A = {j : βt(j) ̸= 0} be the active set, and Ac = {j : βt(j) = 0}.

The full data adpative lasso of rare-events data:

θ̂adp
mle = argmax

θ


N∑
i=1

[yig(xi;θ)− log{1 + eg(xi;θ)}]− λN

p∑
j=1

|β(j)|
|β̂pl(j)|γ

 , (8)

where β̂pl is a consistent pilot estimate, and λN and γ are tuning
parameters.

The penalty term is critical for oracle properties.

Optimal subsampling also requires a pilot estimate, so it is natural
to combine adaptive lasso with optimal subsampling.

4Zou (2006) and Zhang and Lu (2007)
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Subsampling with Variable selection

Oracle properties

Theorem 2.1 (Oralce properties of full data adaptive lasso)

Let Âadp := {j : β̂adp
mle(j) ̸= 0}. Under some regularity conditions:

1. Consistency in variable selection: lim
N→∞

P(Âadp = A) = 1.

2. Asymptotic normality:√
N1(θ̂

adp
mle(A) − θt(A))

D−→ N(0,Vmle(A)), (9)

where Vmle(A) = E{ef(x;βt)}M−1
(A) and

M(A) = E{ef(xi;βt)ġ⊗2
(A)(xi;θt)}.
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Subsampling with Variable selection

Adaptive lasso with subsample IPW estimators

Consider a penalized IPW estimator

θ̂adp
w := argmax

θ

ℓsubw (θ)− λw

p∑
j=1

|β(j)|
|β̂pl(j)|γ

 , (10)

where

ℓsubw (θ) =
N∑
i=1

δi
yig(xi;θ)− log{1 + eg(xi;θ)}

π(xi, yi)
. (11)

θ̂adp
w also has oracle properties.
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Subsampling with Variable selection

Oracle properties

Theorem 2.2 (Subsample IPW adaptive lasso)

Under some regularity conditions:

1. Consistency in variable selection: lim
N→∞

P(Âw = A) = 1.

2. Asymptotic normaility:√
N1(θ̂

adp
w(A) − θt(A))

D−→ N(0,Vw(A)), (12)

where Vw(A) = Vmle(A) +Vsub(A), and

Vsub(A) = cE
{
ef(x;βt)

}
M−1

(A)E
[
φ−1(x(A))e

2f(x;βt)ġ⊗2
(A)(x;θt)

]
M−1

(A).

Here cE
{
ef(x;βt)

}
= lim

P

N1

N0ρ
, the positive/negative ratio in the

subsample.
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Subsampling with Variable selection

Optimal subsampling for adaptive lasso

Proposition 1 (Optimal subsampling functions)

The A-optimal function that minimizes tr(Vw(A)) is

φadp
A−OS(x) =

p(x;θt)∥M−1
(A)ġ(A)(x;θt)∥

E
{
p(x;θt)∥M−1

(A)ġ(A)(x;θt)∥
} . (13)

A L-optimal function that minimizes tr(Mw(A)) is

φadp
L−OS(x) =

p(x;θt)∥ġ(A)(x;θt)∥
E
{
p(x;θt)∥ġ(A)(x;θt)∥

} . (14)
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Subsampling with Variable selection

Inactive variables may affect optimal function

Optimal functions only dependent on active variables.

We need to estimate A using pilot estimates.

It is unavoidable to include inactive variables in pilot estimates.

Existing optimal functions affected by inactive variables in
practice.
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Subsampling with Variable selection

Illustration of the issue of scale dependence

Consider a logistic regression with independent features.

φmle
A−OS(x) ∝ p(x;θt)

√√√√KA + E{ex
T
(A)

βt}−2
∑
j∈Ac

x2(j)

V(x(j))2
, (15)

φmle
L−OS(x) ∝ p(x;θt)

√
1 +

∑
j∈A

x2(j) +
∑
j∈Ac

x2(j). (16)

If we rescale x(Ac) to τx(Ac), we have

φmle
A−OS(x) ∝ p(x;θt)

√√√√KA +
1

τ2
E{ex

T
(A)

βt}−2
∑
j∈Ac

x2(j)

V(x(j))2
, (17)

φmle
L−OS(x) ∝ p(x;θt)

√
1 +

∑
j∈A

x2
(j) + τ2

∑
j∈Ac

x2(j). (18)
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Subsampling with Variable selection

Numerical illustration

Consider a logistic model with βt = (1, 1, 0, 0, 0, 0).

Components of x(Ac) are not independent.

Variance of each variable is 1 in the original scale.

We draw barcharts of contributions of each variable to optimal
probabilities.

We multiply 0.1 to x(6) (an inactive variable) to show the impact
of scaling on sampling probabilities.
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Contribution of variables to optimal probabilities

(a) A-optimality probabilities

(b) L-optimality probabilities

original scale of x(6) re-scale of x(6)

original scale of x(6) re-scale of x(6)



Subsampling with Variable selection

Scale invariant optimal function

Consider the prediction error of an estimator θ̂.

MSPE(θ̂) =

∫ {
p(x; θ̂)− p(x;θt)

}2
dPx,

Theorem 2.3 (Asymptotic distribution of predition error)

Under some regularity conditions, the prediction error satisfies

N1e
−2αtMSPE(θ̂adp

w(A)) (19)

D−→ E−1
{
ef(x;βt)

}
ZT
(A)M

1/2
w(A)M

−1
(A)Ω(A)M

−1
(A)M

1/2
w(A)Z(A). (20)

where Z(A) ∼ N(0, I) and Ω(A) = E
{
e2f(x;βt)ġ⊗2

(A)(x,θt)
}
.
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Subsampling with Variable selection

Scale invariant optimal function

Theorem 2.4 (Scale invariant optimal function)

Minimizing the asymptotic mean of the prediction error gives

φadp
P−OS(x) =

p(x;θt)∥Ω
1
2

(A)M
−1
(A)ġ(A)(x;θt)∥

E
{
p(x;θt)∥Ω

1
2

(A)M
−1
(A)ġ(A)(x;θt)∥

} . (21)

Proposition 2 (Scale invariant property)

If g(x;θ) satisfies that for every non-singular matrix A there exists a
non-singular matrix B, such that

g(Ax;BTθ) = g(x;θ), (22)

then, φadp
P−OS(x) is invariant to scale changes of x.

HaiYing Wang Subsampling adaptive lasso 19 / 32



Subsampling with Variable selection

Contribution of variables to scale invariant optimal
probabilities

(a) Original scale of x. (b) Re-scale of x.

HaiYing Wang Subsampling adaptive lasso 20 / 32



Penalized MSCL estimator and its theoretical analysis

Outline

1 Introduction

2 Subsampling with Variable selection

3 Penalized MSCL estimator and its theoretical analysis

4 Numerical experiments

HaiYing Wang Subsampling adaptive lasso 21 / 32



Penalized MSCL estimator and its theoretical analysis

The limitation of the IPW estimator

Remember the penalized IPW estimator

θ̂adp
w := argmax

θ

ℓsubw (θ)− λw

p∑
j=1

|β(j)|
|β̂pl(j)|γ

 , (23)

where

ℓsubw (θ) =
N∑
i=1

δi
yig(xi;θ)− log{1 + eg(xi;θ)}

π(xi, yi)
. (24)

Data points with higher π(xi, yi) have lower weights.

The estimation effciency can be further improved.
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Penalized MSCL estimator and its theoretical analysis

Maximum sampled conditional likelihood (MSCL)

Instead of penalized IPW, we proposed a penalized MSCL estimator

θ̂adp
lik := argmax

θ

ℓsublik (θ)− λlik

p∑
j=1

|β(j)|
|β̂pl(j)|γ

 , (25)

where

ℓsublik (θ) =

N∑
i=1

δi[yig(xi;θ)− log{1 + eg(xi;θ)+li}], (26)

and li = − log{ρφ(xi)}.
MSCL estimator is more effcient than IPW (Wang and Kim,
2022; Wang et al., 2021).
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Penalized MSCL estimator and its theoretical analysis

Practical implementation

1: Take a pilot sample of expected sample size Npl using
{π(yi) = ρ0 + yi(ρ1 − ρ0)}Ni=1 and obtain a pilot estimator with
lasso penality. We call this first stage screening.

Record Âpl= {j : β̂pl(j) ̸= 0} and calculate approximate
optimal sampling probabilities.

2: Use the estimated optimal sampling probabilities to obtain a
subsample and the adaptive lasso estimator:

θ̂adp
lik := argmax

θ

ℓsublik (θ)− λlik

∑
j∈Âpl

|β(j)|
|β̂pl(j)|γ

 , (27)

We call this step the second stage screening.

HaiYing Wang Subsampling adaptive lasso 23 / 32



Penalized MSCL estimator and its theoretical analysis

Oracle properties

Theorem 3.1 (MSCL adaptive lasso estimator)

Under some regularity conditions:

1. Consistency in variable selection: lim
N→∞

P(Âlik = A) = 1

2. Asymptotic normality:√
N1V

−1/2
lik(A)(θ̂

adp
lik(A) − θt(A))

D−→ N(0, I), (28)

where Vlik(A) = E
{
ef(x;βt)

}
Λ−1

lik(A) and

Λlik(A) = E

[
ef(x;βt)ġ⊗2

(A)(x;βt)

1 + cφ−1(x)ef(x;βt)

]
.

HaiYing Wang Subsampling adaptive lasso 24 / 32



Numerical experiments

Outline

1 Introduction

2 Subsampling with Variable selection

3 Penalized MSCL estimator and its theoretical analysis

4 Numerical experiments

HaiYing Wang Subsampling adaptive lasso 25 / 32



Numerical experiments

Simulations

Consider a logistic regression, i.e. g(x;θ) = α+ xTβ.

Imbalance rate: 0.5%.

Five cases of parameters β:
(A) βt = (3, 1.5, 0, 0, 2, 0, 1, 0, 1, 0, , ..., 0︸ ︷︷ ︸

41

)T.

(B) βt = (0.65, 0.65, 0, , ..., 0︸ ︷︷ ︸
7

, 0.65, 0, 0.65, 0, , ..., 0︸ ︷︷ ︸
7

, 0.65, 0, , ..., 0︸ ︷︷ ︸
30

)T.

(C) βt = (0.75, 0.75, 0, ..., 0︸ ︷︷ ︸
7

, 0.75, 0, 0.75, 0.75, 0, ..., 0︸ ︷︷ ︸
37

)T.

(D) βt = (3, 2, 0, ..., 0︸ ︷︷ ︸
7

, 0.85 0, ..., 0︸ ︷︷ ︸
40

)T.

(E) βt = (3,−2, 0, ..., 0︸ ︷︷ ︸
7

, 0.85, 0,−0.75, 0, ..., 0︸ ︷︷ ︸
18

)T.

Two scenarios of distributions of covariates x:
1 Some inactive variables have large variances.
2 Some inactive variables have small variances.
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Numerical experiments

eMSE for Scenarios 1

(a) Case A (b) Case B (c) Case C

(d) Case D (e) Case E
HaiYing Wang Subsampling adaptive lasso 26 / 32



Numerical experiments

eMSE for Scenarios 2

(a) Case A (b) Case B (c) Case C

(d) Case D (e) Case E
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Numerical experiments

eMSPE for Scenarios 1

(a) Case A (b) Case B (c) Case C

(d) Case D (e) Case E
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Numerical experiments

Variable selection

Table 2: Mean number of selected variables

Case D (three active variables)

ρ first-stage Uni A-OS L-OS P-OS

0.0025 11.12 2.95 3.05 3.06 3.05
0.005 11.55 2.99 3.09 3.10 3.11
0.0075 11.62 3.01 3.08 3.11 3.08

Table 3: Rates of excluding active variables

Case D

ρ Uni A-OS L-OS P-OS

0.0025 0.102 0.050 0.058 0.056
0.005 0.076 0.040 0.040 0.040
0.0075 0.070 0.040 0.040 0.040
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Numerical experiments

Real data performance

Covtype: N = 581012,p = 52, Cottonwood/Willow:0.473%

Font: N = 832670,p = 407, GADUGI:0.5%

(a) AUC of covtype data set (b) AUC of font data set
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Numerical experiments

Some take-away

1 No need to use the full data for rare events data; focus on the rare
ones.

2 For negative subsampling rare events data, optimal design is not
relevant if sufficient zeros can be included.

3 Oracle properties are nice, but we are not the Oracle.

4 Minimizing the prediction error produces scale invariant optimal
probabilities.

5 The conditional likelihood is often better than the IPW.
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Numerical experiments

Thank you!
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Numerical experiments
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